ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 12.1.5
December 15, 2021

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 15, 2021

1.1 Deprecations

1 General Information

1.1 Deprecations

1.1.1 Introduction

Thisdocument lists all deprecated functionality in Erlang/OTP. For more information regarding the strategy regarding
deprecations see the documentation of Support, Compatibility, Deprecations, and Removal.

1.1.2 OTP 24
Erlang Distribution Without Large Node Container Support

Communication over the Erlang distribution without support for large node container data types (version 4) is as of
OTP 24 deprecated and is scheduled for removal in OTP 26. That is, as of OTP 26, support for large node container
data types will become mandatory.

Old Link Protocol

The old link protocol used when communicating over the Erlang distribution is as of OTP 24 deprecated and support
for it is scheduled for removal in OTP 26. As of OTP 26, the new link protocol will become mandatory. That is,
Erlang nodes will then refuse to connect to nodes not implementing the new link protocoal. If you implement the Erlang
distribution yourself, you are, however, encouraged to implement the new link protocol as soon as possible since the
old protocol can cause links to enter an inconsistent state.

?NO_APP macro
The 2ZNO_APP macro in the edoc include fileedoc_docl et . hr| has been deprecated.

Functions Deprecated in OTP 24

e code:is_nodul e_native/ 1 (HiPE has been removed)

« disk_log:accessible_ | ogs/0 (usedisk log:al/0instead)

e disk_log:Ilclosell (usedisk_log:close/1 instead)

e« disk_log:Ilclosel?2 (usedisk_|log:close/1 instead)

e erl ang: phash/ 2 (use erlang:phash2/2 instead)

« ftp:start_service/1 (useftp:open/2 instead)

e ftp:stop_service/l (useftp:close/l instead)

e httpd_util:flatlength/1 (useerlang:iolist_size/1 instead)

e httpd util:hexlist to_ integer/1 (useerlanglist to integer/2 with base 16 instead)
e httpd_util:integer_to_hexlist/1 (useerlang:integer to list/2 with base 16 instead)
e httpd_util:strip/1 (usestring:trim/1 instead)

e httpd_util:suffix/1 (usefilename:extension/1 and string:trim/2 instead)
 public_key:ssh_decode/ 2 (use ssh_file:decode/2 instead)

e« public_key:ssh_encode/ 2 (usessh_fileencode/2 instead)

e« public_key:ssh_hostkey fingerprint/1 (usessh:hostkey fingerprint/1 instead)

* public_key:ssh_hostkey_fingerprint/2 (usessh:hostkey fingerprint/2 instead)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

1.1 Deprecations

e zlib:adl er32/ 2 (useerlang:adler32/1 instead)

e zlib:adl er32/ 3 (useerlang:adler32/2 instead)

e zlib:adl er32_comnbi ne/ 4 (use erlang:adler_combine/3 instead)

e zlib:crc32/ 1 (useerlang:crc32/1 on the uncompressed data instead)

e« zlib:crc32/ 2 (useerlang:crc32/1 instead)

e« zlib:crc32/ 3 (useerlang:crc32/2 instead)

e zlib:crc32_conbi ne/ 4 (useerlang:crc32_combine/3 instead)

* zlib:getBufSize/1 (thisfunction will be removed in afuture release)
e zlib:inflateChunk/1 (usesafelnflate/2 instead)

e« zlib:inflateChunk/ 2 (usesafelnflate/2 instead)

* zlib:setBufSize/ 2 (thisfunction will be removed in afuture release)

1.1.3 OTP 23

Crypto Old API
The Old API is deprecated as of OTP 23 and has been removed in OTP 24.
For replacement functions see the New API.

http_uri

Since OTP 21 the recommended module to handle URIs is uri_string. The module http_uri does not provide a
implementation that satisfies the RFC.

ssh

The public key algorithm ' ssh-r sa isregarded as insecure due to its usage of SHA1, and is therfore deprecated.
It will not be available by default from OTP-24.

The public key algorithm ' ssh- dss isregarded as insecure due to its usage of SHA1 and its short key length, and
istherfore deprecated. It is not available by default from OTP-23.

Distributed Disk Logs
Asof OTP 23, the distributed di sk_I| og feature has been deprecated and it has also been removed in OTP 24.

erl_interface registry

As of OTP 23, the r egi st ry functionality part of er| _i nt er f ace has been deprecated and it has also been
removed in OTP 24.

Functions Deprecated in OTP 23

« filenane:safe relative_path/1 (usefileib:safe relative path/2 instead)
e http_uri:decode/ 1 (useuri_string functions instead)

e http_uri:encode/ 1 (useuri_string functions instead)

* http_uri: parse/ 1 (useuri_string functions instead)

e http_uri: parse/ 2 (useuri_string functions instead)

e http_uri:schenme_defaul ts/0 (useuri_string functions instead)
e« httpd: parse_query/ 1 (useuri_string:dissect_query/1 instead)
 snnmpm async_get/ 3 (use snmpm:async_get2/3 instead.)

e snnpm async_get/ 4 (use snmpm:async_get2/4 instead.)

* snnmpm async_get/ 5 (use snmpm:async_get2/4 instead.)

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.1 Deprecations

snnpm async_get/ 6 (use snmpm:async_get2/4 instead.)

snnpm async_get _bul k/ 5 (use snmpm:async_get_bulk2/5 instead.)
snnpm async_get _bul k/ 6 (use snompm:async_get_bulk2/6 instead.)
snnpm async_get _bul k/ 7 (use snmpm:async_get bulk2/6 instead.)
snnpm async_get _bul k/ 8 (use snompm:async_get_bulk2/6 instead.)
snnpm async_get _next/ 3 (use snmpm:async_get next2/3 instead.)
snnpm async_get next/ 4 (use snmpm:async_get next2/4 instead.)
snnpn async_get _next/ 5 (use snmpm:async_get next2/4 instead.)
snnpm async_get next/ 6 (usesnmpm:async_get next2/4 instead.)
snnpm async_set / 3 (use snmpm:async_set?2/3 instead.)

snnpm async_set / 4 (use snmpm:async_set2/4 instead.)

snnpm async_set /5 (use snmpm:async_set2/4 instead.)

snnpm async_set/ 6 (use snmpm:async_set?/4 instead.)

snnpm sync_get/ 3 (use snmpm:sync_get2/3 instead.)

snnpm sync_get / 4 (use snmpm:sync_get2/4 instead.)

snnpm sync_get /5 (use snmpm:sync_get2/4 instead.)

snnpm sync_get / 6 (use snmpm:sync_get2/4 instead.)

snnpm sync_get _bul k/ 5 (use snmpm:sync_get bulk2/5 instead.)
snnpm sync_get _bul k/ 6 (use snmpm:sync_get bulk2/6 instead.)
snnpm sync_get _bul k/ 7 (use snmpm:sync_get bulk2/6 instead.)
snnpm sync_get _bul k/ 8 (use snmpm:sync_get bulk2/6 instead.)
snnpm sync_get _next/ 3 (use snmpm:sync_get_next2/3 instead.)
snnpm sync_get _next/ 4 (use snmpm:sync_get next2/4 instead.)
snnpm sync_get next/ 5 (use snmpm:sync_get next2/4 instead.)
snnpm sync_get _next/ 6 (use snmpm:sync_get _next2/4 instead.)
snnpm sync_set/ 3 (use snmpm:sync_set2/3 instead.)

snnpm sync_set / 4 (use snmpm:sync_set?/4 instead.)

snnpm sync_set /5 (use snmpm:sync_set2/4 instead.)

snnmpm sync_set/ 6 (use snmpm:sync_set?/4 instead.)

1.1.4 OTP 22
VxWorks Support

Some parts of OTP has had limited VxWorks support, such asfor exampleer | _i nt er f ace. This support is as of
OTP 22 formally deprecated and has also been removed in OTP 23.

Legacy parts of erl_interface

Theold legacy er| _i nt er f ace library (functions with prefix er | _) is deprecated as of OTP 22. These parts of
erl _interface hasbeeninformally deprecated for a very long time. Y ou typically want to replace the usage of
theer| _i nt erface library with the use of theei library which alsoispart of theer | _i nt er f ace application.
Theoldlegacy er | _i nt er f ace library has also been removed in OTP 23.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

1.1 Deprecations

System Events

The format of "System Events" as defined in the man page for sys has been clarified and cleaned up. Due to this,
code that relied on the internal badly documented previous (before this change) format of OTP's "System Events',
needs to be changed.

Inthewake of thisthefunction sys.get_debug/3 that returns datawith undocumented and internal format (and therefore
ispractically useless) has been deprecated, and anew function sys.get_log/1 has been added, that hopefully does what
the deprecated function was intended for.

Functions Deprecated in OTP 22

e net: broadcast/ 3 (userpc.eva_everywhere/3 instead)

 net:call/4 (userpc:cal/4instead)

e net:cast/ 4 (userpc:cast/4 instead)

e net: ping/ 1l (usenet_adm:ping/linstead)

 net:rel ay/ 1 (usedaverelay/l instead)

« net: sl eep/ 1l (use'receive after T -> ok end' instead)

» sys:get _debug/ 3 (incorrectly documented and only for internal use. Can often be replaced with
sys.get_log/1)

1.1.5 OTP 20

Functions Deprecated in OTP 20
e crypto:rand_uniform 2 (userand:uniform/1 instead)
e gen_fsm _/ _ (usethe'gen_statem' module instead)

1.1.0 OTP 19
SSL/TLS

For security reasons SSL-3.0 is ho longer supported by default, but can be configured.

Functions Deprecated in OTP 19

e code: rehash/ 0 (the code path cache feature has been removed)
e queue: | ai t/ 1 (usequeueliat/1 instead)
e random _/ _ (usethe'rand' module instead)

1.1.7 OTP 18

erlang:now/0

New time functionality and a new time APl was introduced. For more information see the Time and Time
Correction chapter in the ERTS User's guide and specifically the Dos and Donts section on how to replace usage of
erl ang: now 0.

httpd_conf module

API functions in the module ht t pd_conf was deprecated in favor of standard modulessuch asl i st's, stri ng,
filelib,anderl ang.

Functions Deprecated in OTP 18

e erlang: now O (seethe"Time and Time Correction in Erlang" chapter of the ERTS User's Guide for more
information)

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Removed Functionality

1.1.8 OTP 16

Functions Deprecated in OTP 16
e wxCal endar Ctrl: enabl eYear Change/ 1 (not available in wxWidgets-2.9 and later)
e wxCal endar Ctrl : enabl eYear Change/ 2 (not available in wxWidgets-2.9 and later)

1.1.9 OTP 12
inets - httpd Apache config files

A new config file format was introduced.

Functions Deprecated in OTP 12

e aut h: cooki e/ 0 (use erlang:get_cookie/0 instead)

e aut h: cooki e/ 1 (use erlang:set_cookie/2 instead)

e« auth:is_auth/1 (usenet_adm:ping/1 instead)

e aut h: node_cooki e/ _ (useerlang:set_cookie/2 and net_adm:ping/1 instead)

e calendar:local time_to_universal _tinme/1 (usecalendar:local_time to universa_time dst/1
instead)

1.2 Removed Functionality

1.2.1 Introduction

This document lists all removed functionality in Erlang/OTP. For more information regarding the strategy regarding
removals see the documentation of Support, Compatibility, Deprecations, and Removal.

1.2.2 OTP 24

erl_interface registry
Ther egi st ry functionality part of er | _i nt er f ace was as of OTP 23 deprecated and was removed in OTP 24.
Compilation of Latin-1 Encoded Erlang Files

The Erlang compiler now refuses to compile source files encoded in Latin-1 without a%% coding: latin-1
comment at the beginning of the file.

igor and erl_tidy modules in syntax_tools

Thei gor ander| _ti dy modules have been removed from OTP and is now maintained by their origina author
Richard Carlsson. They can be found at github.com/richcarl/igor and github.com/richcarl/er|_tidy, respectively.

Distributed Disk Logs
Thedistributed di sk_| og feature was as of OTP 23 deprecated and was removed in OTP 24.

Old Crypto API
The Old API was removed in OTP 24. The support was formally deprecated as of OTP 23.

For replacement functions see the New API.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

href
href

1.2 Removed Functionality

Megaco version 3 encoding config

The pre-release version 3 encoding configs; pr ev3a, pr ev3b and pr ev3c was removed in OTP 24. Use the full
version instead.

The (encoding) config option for thefull version, { ver si on3, 3}, will till be supported, even though its no longer
necessary to specify it thisway.

Functions Removed in OTP 24

e crypto: bl ock_decrypt/ 3 (usecrypto:crypto_one time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

* crypto: bl ock_decrypt/ 4 (usecrypto:crypto_one time/5, crypto:crypto_one_time_aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)?_update + crypto:crypto_final instead)

e« crypto: bl ock_encrypt/ 3 (usecrypto:crypto_one time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

e« crypto: bl ock_encrypt/ 4 (usecrypto:crypto_one_time/5, crypto:crypto_one_time_aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)? _update + crypto:crypto_final instead)

e crypto: cmac/ 3 (use crypto:mac/4 instead)

e« crypto: cnac/ 4 (use crypto:macN/5 instead)

e crypto: hmac/ 3 (use crypto:mac/4 instead)

e crypto: hmac/ 4 (use crypto:macN/5 instead)

e crypto: hmac_final /1 (usecrypto:mac_fina/l instead)

 crypto: hmac_final _n/ 2 (usecrypto:mac_finalN/2 instead)

e crypto: hmac_i nit/ 2 (usecrypto:mac_init/3 instead)

e crypto: hmac_updat e/ 2 (use crypto:mac_update/2 instead)

e crypto:next _iv/_(seethe'New and Old API' chapter of the CRYPTO User's guide)

e crypto: pol y1305/ 2 (use crypto:mac/3 instead)

e crypto:stream decrypt/ 2 (usecrypto:crypto_update/2 instead)

e crypto:stream encrypt/ 2 (usecrypto:crypto_update/2 instead)

e crypto:stream.init/_ (usecrypto.crypto init/3 + crypto:crypto_update/2 + crypto:crypto final/1 or
crypto:crypto_one_time/4 instead)

« filenane: find_src/_ (usefilelib:find_source/1,3 instead)
 pg2: /[_ (thismodulewasremoved in OTP 24. Use 'pg' instead)
e ssl:cipher_suites/O0 (usecipher_suites/2,3 instead)

e ssl:cipher_suites/1 (usecipher_suites2,3 instead)

e ssl:ssl_accept/ _ (usesd_handshake/1,2,3 instead)

1.2.3 OTP 23

VxWorks Support

Some parts of OTP has had limited VxWorks support, suchaser | _i nt er f ace. Thissupport wasremoved in OTP
23. Thislimited support was formally deprecated as of OTP 22.

Legacy parts of erl_interface

The old legacy er| _i nt er f ace library (functions with prefix er| _) was removed in OTP 23. These parts of
erl _i nt erface hasbeeninformally deprecated for avery long time, and was formally deprecated in OTP 22. Y ou
typically want to replace the usage of theer | _i nt er f ace library with the use of the ei library which asois part
of theer | _i nt erf ace application.

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Removed Functionality

httpd_conf module

API functions in the module called ht t pd_conf was deprecated in favor of standard modules such as | i st s,
string,filelib,anderl ang. Formally deprecated as of OTP 18.

inets - httpd Apache config files

Support for the Apache-compatible config files was removed in OTP 23. A new config file format was introduced
in OTP 12.

SSL/TLS

For security reasons SSL-3.0 is ho longer supported at al.

Functions Removed in OTP 23

e« erlang: get_stacktrace/ 0 (usethe new try/catch syntax for retrieving the stack backtrace)
e« httpd_conf: check_enunt 2 (uselists:member/2 instead)

« httpd_conf:cl ean/ 1 (use sting:strip/1 instead or possibly the re modul€)

e httpd_conf: custom cl ean/ 3 (use sting:strip/1 instead or possibly the re module)

e httpd conf:is_directory/1 (usefilelib:is dir/1instead)

e httpd_conf:is_filell (usefileib:is file/linstead)

e httpd_conf: nmake_integer/ 1 (useerlang:list to_integer/1 instead)

1.2.4 OTP 22

Functions Removed in OTP 22
e 0s_non_m b: _/_(thismodulewasremovedin OTP 22.0)

1.2.5 OTP 20

Functions Removed in OTP 20

e asnlct: decode/ _ (use Mod:decode/2 instead)

e asnlct:encode/ _ (use Mod:encode/2 instead)

e erl ang: hash/ 2 (use erlang:phash2/2 instead)

* ssl:connection_info/1 (usess:connection information/[1,2] instead)

e« ssl:negotiated next_ protocol /1 (usess:negotiated protocol/1 instead)

1.2.6 OTP 19

Functions Removed in OTP 19

e core_lib:get_anno/1 (usecerl:get_ann/1 instead)

e core_lib:is_literal/1 (usecerlis litera/l instead)

e core_ lib:is_literal Iist/1(usecerlis litera list/1 instead)

e core_lib:literal _val ue/1 (usecerl:concrete/1 instead)

e core_lib:set_anno/ 2 (usecerl:set_ann/2 instead)

e erl_lint:nodify_line/2 (useerl_parse:map_anno/2 instead)

e erl_parse:get_attribute/2 (erl_anno{column,linelocation,text}/1 instead)
e erl_parse:get_attributes/1 (erl_anno:{column,linelocation,text}/1 instead)
e erl_parse:set_line/2 (useerl_anno:set_line/2)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

1.3 Scheduled for Removal

e erl_scan:attributes_info/ _ (useerl_anno:{column,linelocation,text}/1 instead)

e erl_scan:set_attribute/3 (useerl_anno:set_line/2 instead)

« erl_scan:token_info/ _ (useerl_scan:{category,column,linelocation,symbol text} /1 instead)
e rpc:safe nulti_server _call/2 (userpc:multi_server call/2 instead)

e rpc:safe_nulti_server_call/ 3 (userpc:multi_server call/3 instead)

1.3 Scheduled for Removal

1.3.1 Introduction

This document list al functionality in Erlang/OTP that currently are scheduled for removal. For more information
regarding the strategy regarding removal of functionality see the documentation of Support, Compatibility,
Deprecations, and Removal.

1.3.2 OTP 27

Functions Scheduled for Removal in OTP 27

e zlib:adl er32/ 2 (useerlang:adler32/1 instead)

e zlib:adl er32/ 3 (useerlang:adler32/2 instead)

e zlib:adl er32_comnbi ne/ 4 (use erlang:adler_combine/3 instead)

e zlib:crc32/ 1 (useerlang:crc32/1 on the uncompressed data instead)

e« zlib:crc32/ 2 (useerlang:crc32/1 instead)

e zlib:crc32/ 3 (useerlang:crc32/2 instead)

e zlib:crc32_conbi ne/ 4 (useerlang:crc32_combine/3 instead)

* zlib:getBufSize/1 (thisfunction will be removed in afuture release)
e« zlib:inflateChunk/1 (usesafelnflate/2 instead)

e« zlib:inflateChunk/ 2 (usesafelnflate/2 instead)

* zlib:setBufSize/ 2 (thisfunction will be removed in afuture release)

1.3.3 OTP 26
Erlang Distribution Without Large Node Container Support

Communication over the Erlang distribution without support for large node container data types (version 4) is as of
OTP 24 deprecated and support for it is scheduled for removal in OTP 26. That is, as of OTP 26, support for large
node container data types will become mandatory.

Old Link Protocol

The old link protocol used when communicating over the Erlang distribution is as of OTP 24 deprecated and support
for it is scheduled for removal in OTP 26. As of OTP 26 the new link protocol will become mandatory. That is,
Erlang nodes will then refuse to connect to nodes not implementing the new link protocoal. If you implement the Erlang
distribution yourself, you are, however, encouraged to implement the new link protocol as soon as possible since the
old protocol can cause links to enter an inconsistent state.

Functions Scheduled for Removal in OTP 26

e code:is_nodul e_native/ 1 (HiPE has been removed)
* code: rehash/ 0 (the code path cache feature has been removed)
e disk_|log:accessible | ogs/0 (usedisk log:al/0instead)

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Scheduled for Removal

di sk_1 og: | cl ose/ 1 (usedisk_log:close/1 instead)

di sk_1 og: | cl ose/ 2 (usedisk_log:close/l instead)

ftp:start_service/ 1 (useftp:open/2 instead)

ftp: stop_servicel 1 (useftp:close/1 instead)

httpd_util:flatlength/1 (useerlang:iolist_size/1 instead)

httpd util:hexlist to_integer/1 (useerlang:list to_integer/2 with base 16 instead)
httpd util:integer_to_hexlist/1 (useerlang:integer to list/2 with base 16 instead)
httpd_util:strip/1 (usestring:trim/1 instead)

httpd_util:suffix/1 (usefilenameextension/1 and string:trim/2 instead)

publ i c_key: ssh_decode/ 2 (use ssh_file:decode/2 instead)

public_key: ssh_encode/ 2 (usessh file:encode/2 instead)

public_key: ssh_host key fingerprint/1 (usessh:hostkey fingerprint/1 instead)
publ i c_key: ssh_host key_fi nger print/ 2 (use ssh:hostkey fingerprint/2 instead)

1.3.4 OTP 25
http_uri

Since OTP 21 the recommended module to handle URIs is uri_string. The module htt p_uri does not provide a
implementation that satisfies the RFC. Formally deprecated since OTP-23.

Functions Scheduled for Removal in OTP 25

filenane:safe rel ative_path/ 1 (usefilelib:safe _relative path/2 instead)
http_uri: decode/ 1 (useuri_string functions instead)

http_uri: encode/ 1 (useuri_string functionsinstead)

http_uri: parse/ 1 (useuri_string functions instead)

htt p_uri: parse/ 2 (useuri_string functions instead)

http_uri: schenme_def aul t s/ 0 (useuri_string functions instead)
snnpm async_get/ 3 (use snmpm:async_get2/3 instead.)

snnpm async_get / 4 (use snmpm:async_get2/4 instead.)

snnpm async_get /5 (use snmpm:async_get2/4 instead.)

snnpm async_get/ 6 (use snmpm:async_get2/4 instead.)

snnpm async_get _bul k/ 5 (use snompm:async_get_bulk2/5 instead.)
snnpm async_get _bul k/ 6 (use snmpm:async_get bulk2/6 instead.)
snnpm async_get _bul k/ 7 (use snmpm:async_get_bulk2/6 instead.)
snnpm async_get _bul k/ 8 (use snmpm:async_get bulk2/6 instead.)
snnpm async_get _next/ 3 (use snmpm:async_get_next2/3 instead.)
snnpnm async_get _next/ 4 (use snmpm:async_get next2/4 instead.)
snnpm async_get next/5 (use snmpm:async_get next2/4 instead.)
snnpm async_get _next/ 6 (use snmpm:async_get next2/4 instead.)
snnpm async_set/ 3 (use snmpm:async_set?/3 instead.)

snnpm async_set / 4 (use snmpm:async_set?/4 instead.)

snnpm async_set /5 (use snrmpm:async_set?2/4 instead.)

snnpm async_set/ 6 (use snmpm:async_set2/4 instead.)

snnpm sync_get / 3 (use snmpm:sync_get2/3 instead.)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

1.4 Upcoming Potential Incompatibilities

 snnmpm sync_get/ 4 (use snmpm:sync_get2/4 instead.)
e snnpm sync_get /5 (use snmpm:sync_get2/4 instead.)
* snnmpm sync_get/ 6 (use snmpm:sync_get2/4 instead.)
e snnpm sync_get bul k/ 5 (use snmpm:sync_get bulk2/5 instead.)
« snnmpm sync_get _bul k/ 6 (use smpm:sync_get bulk2/6 instead.)
e« snnmpm sync_get bul k/ 7 (use snmpm:sync_get bulk2/6 instead.)
e snnpm sync_get bul k/ 8 (use snmpm:sync_get bulk2/6 instead.)
 snnmpm sync_get _next/ 3 (use snmpm:sync_get_next2/3 instead.)
e« snnpm sync_get next/ 4 (use snmpm:sync_get next2/4 instead.)
 snmpm sync_get _next/5 (use snmpm:sync_get_next2/4 instead.)
 snnpm sync_get next/ 6 (usesnmpm:sync_get next2/4 instead.)
e snnpm sync_set/ 3 (use snmpm:sync_set2/3 instead.)
* snnmpm sync_set/ 4 (use snmpm:sync_set2/4 instead.)
e snnpm sync_set /5 (use snmpm:sync_set2/4 instead.)
* snmpm sync_set/ 6 (use snmpm:sync_set2/4 instead.)

1.4 Upcoming Potential Incompatibilities

1.4.1 Introduction
This document lists planned upcoming potential incompatibilitiesin Erlang/OTP.

1.4.2 OTP 25

Distribution flags will become mandatory

In OTP 25, more distribution flags will become mandatory. That is, Erlang nodes will refuse to connect to nodes
not implementing all of the mandatory distribution flags. If you implement the Erlang distribution protocol yourself,
you will need to implement support for all mandatory distribution flags in order to communicate with Erlang nodes
running OTP 25.

The following distribution flags will become mandatory in OTP 25:

DFLAG BI T_BI NARI ES
Support for bitstrings.
DFLAG _EXPORT_PTR_TAG
Support for external funs (f un Modul e: Nane/ Ari ty).
DFLAG _MAP_TAGS
Support for maps.
DFLAG NEW FLOATS
Support for the new encoding of floats.
DFLAG_FUN_TAGS
Support for funs, but only in the new format (NEW_FUN_EXT) because DFLAG_NEW FUN_TAGS isalso
mandatory.

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 Upcoming Potential Incompatibilities

1.4.3 OTP 26

The distribution flag DFLAG_V4_NC will become mandatory

Asof OTP 26, thedistribution flag DFLAG_V4 NC will become mandatory. If you implement the Erlang distribution

protocol yourself, you will need to implement support for DFLAG_V4_NCin order to communicate with Erlang nodes
running OTP 26.

The new link protocol will become mandatory

As of OTP 26, the new link protocol will become mandatory. That is, Erlang nodes will then refuse to connect to
nodes not implementing the new link protocol. If you implement the Erlang distribution yourself, you are, however,

encouraged to implement the new link protocol as soon as possible since the old protocol can cause links to enter an
inconsistent state.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

2.1 Installing the Binary Release

2 Installation Guide

This section describes how to install Erlang/OTP on UNIX and Windows.

2.1 Installing the Binary Release

2.1.1 Windows
The system is delivered as a Windows I nstaller executable. Get it from http://www.erlang.org/download.html
Installing
Theinstallation procedure is automated. Double-click the . exe fileicon and follow the instructions.
Verifying
e Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.

Expect a command-line window to pop up with an output looking something like this:

Erlang/0TP 17 [erts-6.0] [64-bit] [smp:2:2]

Eshell V6.0 (abort with "G)
1>

» Exit by entering the command hal t () .

2> halt().

This closes the Erlang/OTP shell.

2.2 Building and Installing Erlang/OTP

2.2.1 Introduction

This document describes how to build and install Erlang/OTP-24. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including OS X. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://Iwww.erlang.org
* https://github.com/erlang/otp

2.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

Unpacking
e GNU unzip, or amodern uncompress.
* A TAR program that understands the GNU TAR format for long filenames.

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

2.2 Building and Installing Erlang/OTP

Building

GNU nake
Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, cl ang.
Perl 5

ncur ses,terncap,orterm i b -- The development headers and libraries are needed, often known as
ncur ses-devel . Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

sed -- Stream Editor for basic text transformation.

Building in Git
Build the same way as when building the unpacked tar file.
Building on OS X

Xcode -- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing

Aninstal | program that can take multiple file names.

2.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereis alist of utilities needed for those
applications. You will also find the utilities needed for building the documentation.

Building

OpenSSL -- The opensource toolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require a working crypto application and will also be skipped
if OpenSSL ismissing. The publ i c_key application is available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface.Atleast version 1.6.0 of the JDK isrequired.

Download from http://www.or acle.com/technetwor k/java/javase/downloads. We have also tested with IBM's
JDK 1.6.0.

f | ex -- Headers and libraries are needed to build the flex scanner for the megaco application on Unix/Linux.
wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projects/wxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets'wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.

Building Documentation

xsl t proc -- A command line XSLT processor.

A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSL T/
xdtproc2.html.

f op -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.or g/
fop.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

href
href
href
href
href
href
href
href
href
href

2.2 Building and Installing Erlang/OTP

2.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released sourcetar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below.

Unpacking
Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.

$ tar -zxf otp_src_24.1.7.tar.gz # Assuming bash/sh
Now change directory into the base directory and set the SERL_ TOP variable.

$ cd otp_src 24.1.7
$ export ERL TOP="pwd" # Assuming bash/sh

Configuring
Run the following commands to configure the build:
$./configure [options]

By default, Erlang/OTP release will beinstalledin/ usr/ | ocal / { bi n, | i b/ er| ang} . If you for instance don't
have the permission to install in the standard location, you can install Erlang/OTP somewhere else. For example,
to install in /opt/erlang/24.1.7/{bin,lib/erlang}, usethe --prefix=/opt/erlang/24.1.7
option.

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assuming bash/sh
Building
Build the Erlang/OTP release.

$ make

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
isasubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ make release tests

This creates an additional folder in $ERL_TOP/ r el ease calledt est s. Now, it'stimeto start the smoke test.

$ cd release/tests/test server
$ $ERL TOP/bin/erl -s ts install -s ts smoke test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/ r el ease/ t est s/t est_server/i ndex. htm
in your web browser and make sure that there are zero failed test cases.

On buildswithout cr ypt 0, ssl and ssh thereisafailed test case for undefined functions. Verify that the failed
test case log only shows calls to skipped applications.

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

Installing
Y ou are now ready to install the Erlang/OTP release! The following command will install the release on your system.

$ make install

Running

Y ou should now have aworking release of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation
Make sure you're in the top directory in the source tree.
$ cd $ERL TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]

When building the documentation you need afull Erlang/OTP-24.1.7 system in the SPATH.
$ export PATH=$ERL TOP/bin:$PATH # Assuming bash/sh

For the FOP print formatter, two steps must be taken:

* Adding thelocation of your installation of f op in $FOP_HOVE.

$ export FOP_HOME=/path/to/fop/dir # Assuming bash/sh

e Addingthef op script (in $FOP_HQVE) to your $PATH, either by adding $FOP_HOME to $PATH, or by copying
thef op script to adirectory aready in your $PATH.

Build the documentation.
$ make docs

It is possible to limit which types of documentation is build by passing the DOC_TARGETS environment variable to
make docs. Thecurrently availabletypesare: ht m , pdf , man and chunks. Example:

$ make docs DOC TARGETS=chunks

Build Issues

We have sometimes experienced problemswith Oracl€'s| ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xmx<Installed amount of RAM in MB>m"

More information can be found at
e http://xmlgraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Documentation
The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

href

2.2 Building and Installing Erlang/OTP

« If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al I -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing make install .

$ make install-docs

* Ifyouhaveinstalled Erlang/OTPusingther el ease target, install thedocumentationusingther el ease_docs
target. You typically want to use the same RELEASE _ROOT aswhen invoking meke r el ease.

$ make release docs RELEASE ROOT=<release dir>

It is possible to limit which types of documentation is released using the same DOC_TARCETS environment variable
as when building documentation.

Accessing the Documentation
After installation you can access the documentation by

e Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr /| ocal / bi n/
er | . Try viewing at the man page for Mnesia

$ erl -man mnesia

e Browsing the html pagesby loadingthepage/ usr /| ocal / 1i b/ er| ang/ doc/ er | ang/ i ndex. ht m or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

* Read the embedded documentation by using the built-in shell functionsh/ 1, 2, 3orht/ 1, 2, 3.
How to Install the Pre-formatted Documentation

Pre-formatted html documentation and man pages can be downloaded from

* http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <ReleaseDir>
$ tar -zxf otp_html 24.1.7.tar.gz

Forerl -man <page> towork the Unix manual pages haveto beinstalled in the same way, i.e.

$ cd <ReleaseDir>
$ tar -zxf otp man 24.1.7.tar.gz

Where<Rel easeDir > is

e <PrefixDir>/Ilib/erlangifyouhaveinstaled Erlang/OTP usingmake i nstal | .

* $DESTDI R<PrefixDir>/1ib/erl ang if you haveinstaled Erlang/OTP using meke i nstal |
DESTDI R=<Tnpl nstal | Di r >.

« RELEASE ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

2.2.5 Advanced configuration and build of Erlang/OTP

If youwant totailor your Erlang/OTP build and installation, please read on for detailed information about theindividual
steps.

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_ TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

2.2 Building and Installing Erlang/OTP

will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

$ cd lib/stdlib; env ERL_TOP=<Dir> make
where <Di r > would be what you find ERL_ TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/

confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. The binary releases for
Windows that we deliver are built using ot p_bui I d.

Configuring
The configure script is created by the GNU autoconf utility, which checksfor system specific features and then creates
anumber of makefiles.

The configure script alows you to customize a number of parameters; type . / configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for all
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
/usr/local/{bin,lib/erlang}.Tokeepthe same structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are:

e --prefix=PATH- Specify installation prefix.

e --disabl e-parallel-configure -Disableparalel execution of conf i gur e scripts (parallel
execution is enabled by default)

e --{enabl e, di sabl e}-jit -Forceenabling or disabling of the JIT.

e --{enabl e, di sabl e} -kernel - pol | -Kernel poll support (enabled by default if possible)

e --enabl e- n64- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc

e --enabl e-nB2- bui | d - Build 32-bit binariesusing the - n82 flagto (g) cc

« --{enabl e, di sabl e} - pi e - Build position independent executable binaries.

e --wth-assuned-cache-1line-si ze=Sl| ZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use this value in order to
try to avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false
sharing.

o --{with,w thout}-terntap - termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Javacompiler to use

e --{with,wthout}-javac - Javacompiler (without impliesthat thej i nt er f ace application won't be
built)

e --{enabl e, disabl e}-builtin-zlib -Usethebuilt-in source for zlib.

e --{enabl e, di sabl e}-dynamni c-ssl -1i b - Enable or disable dynamic OpenSSL libraries when
linking the crypto NIF. By default dynamic linking is done unless it does not work or isif it isaWindows
system.

e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt o, ssh, and ssl won't be built)
e --w th-ssl =PATH- Specify base location of OpenSSL include and lib directories.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

2.2 Building and Installing Erlang/OTP

--w t h-ssl -i ncl =PATH - Specify base location of OpenSSL i ncl ude directory (if different than base
location specified by --with-ssI=PATH).

--W t h-ssl - zl i b=PATH - Path to static zlib library to link the crypto NIF with. This zlib library is most
often not necessary but might be needed in order to link the NIF in some cases.

--with-ssl-1ib-subdi r =RELATI VE_PATH - Specify extra OpenSSL lib sub-directory to searchin
(relative to base directory).

--Wi t h-ssl -r pat h=yes| no| PATHS - Runtime library path for OpenSSL. Default isyes, which equates
to anumber of standard locations. If no, then no runtime library paths will be used. Anything else should be a
commaor colon separated list of paths.

--with-Iibatom c_ops=PATH- Usethel i bat oni c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try
usingthel i bat om c_ops library. It can be downloaded from https://github.com/ivmai/libatomic_ops/.

--di sabl e-snp-requi re-nati ve-at om cs - By default conf i gur e will fail if an SMP runtime
system is about to be built, and no implementation for native atomic memory accesses can be found. If

this happens, you are encouraged to find a native atomic implementation that can be used, e.g., using

I i bat omi c_ops, but by passing - - di sabl e-snp-requi re-native-atom cs you can build using a
fallback implementation based on mutexes or spinlocks. Performance of the SMP runtime system will however
suffer immensely without an implementation for native atomic memory accesses.

--enabl e-static-{nifs,drivers} - Toallow usage of nifsand drivers on OSs that do not

support dynamic linking of librariesit is possible to statically link nifs and drivers with the main Erlang

VM binary. Thisis done by passing a comma separated list to the archives that you want to statically link.
e.g.--enabl e-stati c-ni fs=/ hone/ $USER/ my_ni f . a. The path has to be absolute and the

name of the archive has to be the same asthe module, i.e. ny_ni f inthe example above. Thisisalso true

for drivers, but then it is the driver name that has to be the same as the filename. Y ou aso have to define
STATI C_ERLANG { NI F, DRI VER} when compiling the .o files for the nif/driver. If your nif/driver depends
on some other dynamic library, you now have to link that to the Erlang VM binary. Thisis easily achieved by
passing LI BS=- 1 | i bnane to configure.

--wi t hout - $app - By default all applicationsin Erlang/OTP will be included in arelease. If thisis not
wanted it is possible to specify that Erlang/OTP should be compiled without one or more applications, i.e. - -
wi t hout - wx. There is no automatic dependency handling between applications. If you disable an application
that another application depends on, you aso have to disable the dependant application.

--enabl e- getti neof day- as- os- syst enmtti ne - Forceusage of get t i meof day() for OS system
time.

- -enabl e- pr ef er - el apsed- nonot oni c-ti me-duri ng- suspend - Prefer an OS monotonic time
source with elapsed time during suspend.

--di sabl e- prefer-el apsed- nonot oni c-ti me-duri ng-suspend - Do not prefer an OS
monoatonic time source with elapsed time during suspend.

--wi th-cl ock-resol uti on=hi gh| | ow- Try tofind clock sources for OS system time, and OS
monatonic time with higher or lower resolution than chosen by default. Note that both alternatives may have a
negative impact on the performance and scalability compared to the default clock sources chosen.

- - di sabl e- saved- conpi | e-ti ne - Disable saving of compile date and time in the emulator binary.

If you or your system has special reguirements please read the Makef i | e for additiona configuration information.

Important Variables Inspected by configure
Compiler and Linker

CC- C compiler.
CFLAGS - C compiler flags. Defaultsto "-g -O2". If you set it, these will be removed.
STATI C_CFLAGS - Static C compiler flags.

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

e« CFLAG _RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

e CPP- C pre-processor.

e CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

e CXXFLAGS - C++ compiler flags.

e LD-Linker.

e LDFLAGS - Linker flags.

e LIBS-Libraries.

Dynamic Erlang Driver Linking

Either set all or none of the DED_LD* variables (with the exception of DED _LDFLAGS CONFTEST). |

 DED_LD- Linker for Dynamically loaded Erlang Drivers.
e« DED _LDFLAGS - Linker flagsto usewith DED LD.

e DED LDFLAGS CONFTEST - Linker flagsto use with DED_LDin configure link testsif DED L DFLAGS
cannot be used in such tests. If not set, DED L DFLAGS will be used in configure tests.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for shared
libraries when linking with DED_LD.

Large File Support

Either set all or none of the LFS_* variables.

e LFS _CFLAGS - Largefile support C compiler flags.
e LFS_LDFLAGS - Largefile support linker flags.
LFS_LI BS- Largefile support libraries.

Other Tools

* RANLI B-ranli b archiveindex tool.

e AR-ar archiving tool.

 CETCONF - get conf system configuration inspection tool. get conf iscurrently used for finding out large
file support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Updating configure Scripts
Generated conf i gur e scripts are nowadays included in the git repository.

If you modify any confi gure.in filesor theerts/acl ocal . m file, you need to regenerate confi gur e
scripts before the changes will take effect. First ensure that you have GNU aut oconf of version 2.69 in your
path. Then execute. / ot p_bui | d update_configure [--no-conmm t] inthe$ERL_TOP directory. The
ot p_bui I d script will verify that aut oconf isof correct version and will refuseto updatetheconf i gur e scripts
if itis of any other version.

Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM will
refuse to build if native atomic memory operations are not available.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

2.2 Building and Installing Erlang/OTP

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler for 32/64-bit x86, 32/64-bit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When
compiling with agcc compatible compiler for other architectures, the VM may be able to make use of native atomic
operationsusingthe __at oni ¢_* builtins (may be available when using agcc of at least version 4.7) and/or using
the __sync_* builtins (may be available when using agcc of at least version 4.1). If only thegcc's__sync_*
builtins are available, the performance will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory operations are provided by
Windows APIs.

Native atomic implementation in the order preferred:

e Theimplementation provided by Erlang/OTP.
* TheAPI provided by Windows.
e Theimplementation based onthegcc __at omi ¢_* builtins.

« If none of the above are available for your architecture/compiler, you are recommended to build and install
libatomic_ops before building Erlang/OTP. Thel i bat omi c_ops library provides native atomic memory
operations for avariety of architectures and compilers. When building Erlang/OTP you need to inform the build
system of wherethel i bat omi c_ops library isinstalled using the - - wi t h- 1 i bat om ¢c_ops=PATH
confi gur e switch.

e Asalast resort, the implementation solely based onthegcc __sync_* builtins. Thiswill however cause lots
of expensive and unnecessary memory barrier instructions to beissued. That is, performance will suffer. The
conf i gur e script will warn at the end of its execution if it cannot find any other alternative than this.

Building

Building Erlang/OTP on arelatively fast computer takes approximately 5 minutes. To speed it up, you can utilize

parallel make with the - j <num _j obs> option.

$ export MAKEFLAGS=-j8 # Assuming bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing amake cl ean.

Other useful information can be found at our GitHub wiki:
« https://github.com/erlang/otp/wiki

Within Git

Build the same way as when building the unpacked tar file.
OS X (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et ¢/
host conf i g). Otherwise you might experience problems when running distributed systems.

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
fl at _namespace -undefined suppress. Youalsoinclude-f no- common in CFLAGS when compiling.
Use. so asthelibrary suffix.

If you have Xcode 4.3, or later, you will also need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Building with wxErlang

If you want to build the wx application, you will need to get wxWidgets-3.0 (WwxW dget s-3. 0. 3. tar. bz2 from
https:.//github.com/wxWidgetswxWidgets'r eleases/download/v3.0.3/wxWidgets-3.0.3.tar .bz2) or get it from
github with bug fixes:

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

2.2 Building and Installing Erlang/OTP

$ git clone --branch WX 3 0 BRANCH git@github.com:wxWidgets/wxWidgets.git

The wxWidgets-3.1 version should also work if 2.8 compatibility is enabled, add - - enabl e- conpat 28 to
configure commands below.

Configure and build wxWidgets (shared library on linux):

$./configure --prefix=/usr/local
$ make && sudo make install
$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (static library on linux):

$ export CFLAGS=-fPIC

$ export CXXFLAGS=-fPIC

$./configure --prefix=/usr/local --disable-shared
$ make && sudo make install

$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (on Mavericks - 10.9):

$./configure --with-cocoa --prefix=/usr/local

or without support for old versions and with static libs

$./configure --with-cocoa --prefix=/usr/local --with-macosx-version-min=10.9 --disable-shared
$ make

$ sudo make install

$ export PATH=/usr/local/bin:$PATH

Check that you got the correct wx-config

$ which wx-config && wx-config --version-full
Build Erlang/OTP

$ export PATH=/usr/local/bin:$PATH
$ cd $ERL TOP

$./configure

$ make

$ sudo make install

Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_bui l d renmove_prebuilt fil es fromthe $ERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping the
build.

Doing . / ot p_bui | d save_boot st rap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing make cl ean../otp_buil d save_boot strap will be
invoked automatically when make isinvoked from $ERL_ TOP with either thecl ean target, or the default target.
Itisalso automatically invoked if . / ot p_bui | d renmove_prebuilt _fil es isinvoked.

If you need to verify the bootstrap beam files match the provided source files, use ./otp_build
updat e_pri mary to create anew commit that contains differences, if any exist.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

2.2 Building and Installing Erlang/OTP

How to Build a Debug Enabled Erlang RunTime System
After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to $ERL_TOP/ er t s/ emul at or and execute:

$ (cd $ERL_TOP/erts/emulator && make debug)
This will produce a beam.smp.debug executable. The file are installed along side with the normal (opt) version
beam snp.
To start the debug enabled runtime system execute:

$ $ERL _TOP/bin/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
a developer ensure correctness. Some of these features can be enabled on anormal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.
$ (cd $ERL TOP/erts/emulator && make $TYPE)

where $TYPE is opt , gcov, gpr of , debug, val gri nd, asan or | cnt . These different beam types are useful
for debugging and profiling purposes.

Installing

e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI Rvariable:

$ make DESTDIR=<tmp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be set to | NSTALL_PREFI X. Notethat | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA_PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

$./configure --prefix=/opt/local

$ make

$ make DESTDIR=/tmp/erlang-build install
$ cd /tmp/erlang-build/opt/local

$ # gnu-tar is used in this example
$ tar -zcf /home/me/my-erlang-build.tgz *
$ su -

Password: ****x
$ cd /opt/local
$ tar -zxf /home/me/my-erlang-build.tgz

« Ingtal using ther el ease target. Instead of doing make i nst al | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangif youdotheinstall using make i nstal | . All installation paths provided in the
conf i gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want links from a specific

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / hone/ me/ OTP:

$./configure

$ make

$ make RELEASE_ROOT=/home/me/OTP release
$ cd /home/me/0TP

$./Install -minimal /home/me/0TP
$ mkdir -p /home/me/bin
$ cd /home/me/bin

$ In -s /home/me/0TP/bin/erl erl

$ In -s /home/me/0TP/bin/erlc erlc

$ In -s /home/me/0TP/bin/escript escript

Thel nst al | script should currently be invoked as followsin the directory where it resides (the top directory):
$./Install [-cross] [-minimal|-sasl] <ERL _ROOT>

where:

e -mni nal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.

e -cross For cross compilation. Informsthe install script that it is run on the build machine.

« <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

e Testinstall using EXTRA _PREFI X. The content of the EXTRA PREFI X variablewill prefix al installation paths
when doing nake i nst al | . Notethat EXTRA PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA PREFI X.

Symbolic Links in --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ | ocal / bi ntoal public Erlang/OTP executablesin/ usr /1 ocal /1i b/ er| ang/ bi n. Theinstalation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- prefi x defaultsto - - prefi x. --prefix,
--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYM_I NKS=r el ati ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.

Running

Erlang/OTP test architectures

Erlang/OTP are currently tested on the following hardware and Opererating systems. This is not an exhaustive list,
but we try to keep it as up to date as possible.

Architecture

* X86, x86-64
 Aarch32, Aarch64
e powerpc, powerpctdle

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

2.3 Cross Compiling Erlang/OTP

Operating System

* Fedora31l

e FreeBSD

e mac0S10.4-11.2
« MontaVistad

* NetBSD

e OpenBSD

e SLES10,11,12
+ Sun0S5.11

e Ubuntu 10.04 - 20.04
* Windows 10, Windows Server 2019

2.3 Cross Compiling Erlang/OTP

Table of Contents

e Introduction
e otp_build Versus configure/make
e Cross Configuration
e What can be Cross Compiled?
e Compatibility
e Patches
e Buildand Install Procedure
» Building With configure/make Directly
» Building a Bootstrap System
e Cross Building the System
e Instaling
» Installing Using Paths Determined by configure
e Instaling Manually
e Building With the otp_build Script
e Building and Installing the Documentation
» Testing the cross compiled system
e Currently Used Configuration Variables
e Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Cross System Root Locations
e Optiona Feature, and Bug Tests

2.3.1 Introduction

This document describes how to cross compile Erlang/OTP-24. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TOP isthe
top directory in the source tree.

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
configure and nmake directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d
conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c-ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
- -enabl e- dynani c- ssl -1 i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui I d. Thedefaultsused by ot p_bui | d confi gur e may change at any time without prior notice.

Cross Configuration

The SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are also listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. O-ti | epro. conf file and the $ERL_TOP/ xconp/ er | -
xconp- x86_64- saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset al of these environment variables before invoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except thewx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks example fileis highly
dependent on our environment and is here more or less only for internal use.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to
$ERL_TOP/ xconp/ er| - xconp. conf . t enpl at e,anduseitinconfi gure. i n. Other filesthat might need
to be updated are;

e $ERL_TOP/ xconp/ erl - xconp-vars. sh

e $ERL_TOP/erl-build-tool -vars. sh

« S$ERL _TOP/erts/aclocal.m

e $ERL_TOP/ xconp/ README. md

e $ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

href
href

2.3 Cross Compiling Erlang/OTP

2.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $ERL_ TOP/HOWTO/INSTALL.md before
proceeding.

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

Building With configure/make Directly

D
Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System
)

$./configure --enable-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
make boot st rap; otherwise, the whole system will be built.

Cross Building the System
(©)

$./configure --host=<HOST> --build=<BUILD> [Other Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full canonicalized CPU- VENDOR- CS triplet will be created by executing SERL_TOP/ er t s/ aut oconf /
confi g.sub <HOST>. If confi g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- CS triplet of the system that you build on. If you execute SERL_TOP/
ert s/ aut oconf/ confi g. guess, it will in most cases print the triplet you want to use for this.

The use of <HOST> and <BUI LD> values that differ will trigger cross compilation. Note that if <HOST> and
<BUI LD> differ, the canonicalized values of <HOST> and <BUI L D> must also differ. If they do not, the configuration
will fail.

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Y ou can not passaconfigurationfileusingthe- - xconp- conf argument whenyouinvokeconf i gur e directly.
The- - xconp- conf argument can only be passedto ot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. make
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Invoking make ERL_XCOWP_FORCE_DI FFERENT_OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing
You can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Determined by configure

4)
$ make install DESTDIR=<TEMPORARY PREFIX>

make install will instal at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - - exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /| ocal . You typically do not want to install your cross build under / usr/

I ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine asit should be executed from on the target machine.

When make i nstall hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only beworking on the target machine at the [ocation determined
by conf i gure.

Installing Manually
©®)
$ make release RELEASE ROOT=<RELEASE DIR>

make rel ease will copy what you have built for the target machine to <RELEASE_DI R>. Thel nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ | ocal /1i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

where:

 -m ni mal Createsan instalation that starts up a minimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also startsup the sas| application.

e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_ROQOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Y ou can now either do:

(6)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

href

2.3 Cross Compiling Erlang/OTP

» Decide where the installation should be located on the target machine, run the I nst al | script on the build
machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE DIR>
$./Install -cross [-minimal|-sasl] <ABSOLUTE INSTALL DIR ON TARGET>

or:

(7)
* Package the installation in <RELEASE_DI R>, place it wherever you want on your target machine, and run the
I nstal | script on your target machine:

$ cd <ABSOLUTE_INSTALL DIR ON_TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE_INSTALL DIR ON_TARGET>

Building With the otp_build Script
8
$ cd $ERL TOP
9)
$./otp build configure --xcomp-conf=<FILE> [Other Config Args]
aternatively:
$./otp build configure --host=<HOST> --build=<BUILD> [Other Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er | _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUI LD> command line arguments.

ot p_bui I d confi gur e will configureboth for the boostrap system on the build machine and the crosshost system.
(10)
$./otp build boot -a

ot p_buil d boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)

$./otp build release -a <RELEASE DIR>
otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

2.3.3 Building and Installing the Documentation

After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the SERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

2.3.4 Testing the cross compiled system

Some of the tests that come with erlang use native code to test. This means that when cross compiling erlang you
also have to cross compile test suites in order to run tests on the target host. To do this you first have to release the
tests as usual .

$ make release tests

or
$./otp build tests

The tests will bereleased into $ERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto. / ot p_bui | d in (9).

$ cd $ERL _TOP/release/tests/test server/
$ $ERL_TOP/bootstrap/bin/erl -eval 'ts:install([{xcomp,"<FILE>"}])' -s ts compile testcases -s init stop

Y ou should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_ TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _server and issue the following command.

$ erl -s ts install -s ts run all tests -s init stop
The configure should be skipped and all tests should hopefully pass. For more details about how to usetsrun er |
-s ts help -s init stop
2.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

These variables currently have no effect if you configure using the conf i gur e script directly. ‘

e erl _xconp_buil d-Thebuild system used. This value will be passed as- - bui | d=$er| _xconp_bui I d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$erl _xconp_buil d. If sat to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/confi g. guess.

* erl_xconp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ er t s/ aut oconf/
config.sub $erl _xconp_host.

« erl_xconp_configure_fl ags - Extraconfigure flags to passto theconf i gur e script.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

2.3 Cross Compiling Erlang/OTP

Cross Compiler and Other Tools

If the cross compilation tools are prefixed by <HOST>- you probably do not need to set these variables (where
<HOST> is what has been passed as - - host =<HOST> argument to conf i gur e). Compiler and other tools can
otherwise be identified via variables passed as arguments on the command line to conf i gur e, in then xcomp file,
or as environment variables. For more information see the Important Variables Inspected by configure section of the
$ERL_TOP/HOWTO/INSTALL.md document.

Cross System Root Locations

* erl_xconp_sysr oot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ss| applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

e erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $er | _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set thesevariabl es.

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
conf i gur e issurethat it cannot figure the result out.

The conf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will be issued.

« erl_xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

* erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automatically.

* erl_xconp_doubl e_m ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian” format. If no, it has"regular" endianness.

e erl_xconmp_clock_gettime_cpu_tine-yes|no.Defaultstono. If yes, the target system must have
aworking cl ock_getti me() implementation that can be used for retrieving process CPU time.

e erl_xconp_getaddrinfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both IPv4 and IPv6.

e erl_xconmp_gethrvtinme_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i ne() implementation and is used with procfsi oct | () .

* erl_xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
working dl syn({ RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack themal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

« erl_xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect () . If no and the
target system has not got epol | () or/ dev/ pol I , the kernel-poll feature will be disabled.

e erl_xconp_linux_clock gettine _correction -yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C,) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

e erl_xconp_linux_nptl -yes|no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically less than 2.6).

e erl_xconp_linux_usabl e_sigal tstack-yes| no.Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

e erl_xconp_linux_usabl e_si gusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically less than
2.2) used these signals and made them unusable by the ERTS.

* erl_xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | () .

e erl_xconp_put env_copy - yes| no. Defaults to no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

* erl_xconp_reliable_fpe-yes|no.Defaultstono. If yes, thetarget system must havereliable floating
point exceptions.

e erl_xconp_posi x_nmenal i gn - yes| no. Defaults to yes if posi x_nemal i gn system cal exists;
otherwise no. If yes, thetarget system must haveaposi x_nenal i gn implementation that acceptslarger than
page size alignment.

e erl_xconp_code_nodel small - yes| no. Default to no. If yes, the target system must place the
beam.smp executable in the lower 2 GB of memory. That is it should not use position independent executable.

2.4 How to Build Erlang/OTP on Windows

Table of Contents

e Introduction

e Short Version

e Toolsyou Need and Their Environment
e The Shell Environment

e Building and Installing

e Development

e Frequently Asked Questions

2.4.1 Introduction

This section describes how to build the Erlang emulator and the OTP libraries on Windows. Note that the Windows
binary releases are till a preferred aternative if one does not have Microsoft’ s development tools and/or don’t want
to install WSL.

The instructions apply to Windows 10 (v.1809 and later) supporting the WSL.1 (Windows Subsystem for Linux v.1)
and using Ubuntu 18.04 release.

The procedure described uses WSL as a build environment. Y ou run the bash shell in WSL and use the gnu configure/
make etc to do the build. The emulator C-source code is, however, mostly compiled with Microsoft Visual C++™,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

2.4 How to Build Erlang/OTP on Windows

producing a native Windows binary. Thisis the same procedure as we use to build the pre-built binaries. Why we use
VC++ and not gcc is explained further in the FAQ section.

These instructions apply for both 32-bit and 64-bit Windows. Note that even if you build a 64-bit version of Erlang,
most of the directories and files involved are still named win32. Some occurrences of the name win64 are however
present. The installation file for a 64-bit Windows version of Erlang, for example, isot p_w n64_24. exe.

If you feel comfortable with the environment and build system, and have all the necessary tools, you have a great
opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions or patches
to our git project to let them find their way into the next version of Erlang. If making changes to the build
system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks, so that
your changes don't break other platforms. That of course goes for C-code too; system specific code resides in
the $ERL_TOP/ ert s/ enul at or/ sys/wi n32 and $ERL_TOP/ ert s/ et ¢/ wi n32 directories mostly. The
$ERL_TOP/ ert s/ emul at or / beamdirectory isfor common code.

2.4.2 Short Version

In the following sections, we've described as much as we could about the installation of the tools needed. Once the
tools are installed, building is quite easy. We have also tried to make these instructions understandable for people
with limited Unix experience. WSL is awhole new environment to some Windows users, why careful explanation of
environment variables etc seemed to be in place.

Thisisthe short story though, for the experienced and impatient:
e Get andinstal complete WSL environment

e Install Visua Studio 2019

e Get and install windows JDK-8

e Get and install windows NSIS 3.05 or later (3.05 tried and working)

* Get, build and install OpenSSL v1.1.1d or later (up to 1.1.1d tried & working) with static libs.

e Get, build and install wxWidgets-3.1.3 or later (up to 3.1.3 tried & working) with static libs.

* Get the Erlang source distribution (from http://www.erlang.or g/download.html) and unpack witht ar to
the windows disk for example to: /mnt/c/src/

* Instal mingw-gcc, and make: sudo apt install g++-m ngw w64 gcc-m ngw w4 nmake

e $ cd UNPACK DIR

* Modify PATH and other environment variables so that all these tools are runnable from a bash shell. till
standing in SERL_ TOPR, issue the following commands (for 32-bit Windows, remove the x64 from the first
row and changeot p_wi n64_24 toot p_w n32_24 onthelast row):

$ eval "./otp build env win32 x64°
$./otp build configure

$./otp build boot -a

$./otp build release -a

$./otp build installer win32

$ release/win32/otp win64 24 /S

Voilal St art - >Prograns->Erl ang OTP 24->Er| ang startsthe Erlang Windows shell.

2.4.3 Tools you Need and Their Environment

Y ou need sometoolsto be ableto build Erlang/OTP on Windows. Most notably you'll need WSL (with ubuntu), Visual
Studio and Microsofts Windows SDK, but you might also want a Java compiler, the NSIS install system, OpenSSL
and wxWidgets. Well, here's some information about the different tools:

32 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

2.4 How to Build Erlang/OTP on Windows

WSL: Install WSL and Ubuntu in Windows 10 https://docs.micr osoft.com/en-us/windows/wsdl/install-win10

We have used and tested with WSL -1, WSL -2 was not available and may not be preferred when building Erlang/
OTP since access to the windows disk is (currently) slower WSL-2.

Visual Studio 2019 Download and run the installer from: http://visualstudio.micr osoft.com/downloads Install
C++ and SDK packages to the default installation directory.

JavaJDK 8 or later (optional) If you don't care about Java, you can skip this step. The result will be that jinterface
is not built.

Our Java code (jinterface, ic) is tested on windows with JDK 8. Get it for Windows and install it, the JRE is
not enough.

URL: http://www.or acle.com/java/technologies/javase-downloads.html
Add javac to your path environment, in my case this means:

"PATH="/mnt/c/Program\ Files/Java/jdk1.8.0 241/bin:$PATH"

No CLASSPATH or anything is needed. Type j avac. exe in the bash prompt and you should get a list of
available Java options.

Nullsoft NSISinstaller system (optional) Y ou heed this to build the self installing package.

Download and run the installer from: URL: http://nsis.sour cefor ge.net/download

Add 'makensis.exe' to your path environment:
“PATH="/mnt/c/Program\ Files/NSIS/Bin:$PATH"

Typewhi ch makensi s. exe inthe bash prompt and you should get the path to the program.
OpenSSL (optional) Y ou need thisto build crypto, ssh and sdl libs.

We recommend v1.1.1d or later. There are prebuilt avaiable binaries, which you can just download and install,
available here: URL: http://wiki.openssl.or g/index.php/Binaries

Install into C: / OpenSSL- W n64 (or C:. / OQpenSSL- W n32)
wxWidgets (optional) Y ou need thisto build wx and use gui's in debugger and observer.
We recommend v3.1.4 or later. Unpack intoc: / opt / | ocal 64/ pgnf wxW dget s- 3. 1. 4

If the wxUSE_PQOSTSCRI PT isn't enabled in c: / opt /| ocal 64/ pgm wxW dget s- 3. 1. 4/ i ncl ude/
wx/ msw/ set up. h, enableit.

We recommend to enable for wxWebView wxUSEWEBVIEWEDGE.

e Download the nuget package 'Microsoft. Web.WebView2' (Version 0.9.488 or newer)

« Extract the package (it's a zip archive) to wxWidgets/3rdparty/webview?2 (you should have 3rdparty/
webview?2/build/native/include/WebView?2.h file after unpacking it)

e EnablewxUSEWEBVIEWEDGE inc: /opt/| ocal 64/ pgm wxW dget s- 3. 1. 4/ i ncl ude/ wx/
nmsw set up. h

Build with:
C:\...\> cd c:\opt\local64\pgm\wxWidgets-3.1.4\build\msw
C:\...\> nmake TARGET CPU=amd64 BUILD=release SHARED=0 DIR SUFFIX CPU= -f makefile.vc

Remove the TARGET _CPU=ant64 for 32bit build.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

href
href
href
href
href

2.4 How to Build Erlang/OTP on Windows

* Get the Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix
platforms. Preferably use tar to unpack the source tar.gz (t ar zxf otp_src_24.tar. gz) to somewhere
onthewindowsdisk,/ mt/c/ path/to/otp_src

NOTE: It isimportant that source on the windows disk.

Set the environment ERL_ TOP to point to the root directory of the source distribution. Let'ssay | stood in/ mt /
¢/ src andunpackedot p_src_24. tar. gz, | then add thefollowingto . profi | e:

ERL TOP=/mnt/c/src/otp src 24
export ERL_TOP

2.4.4 The Shell Environment

The path variable should now contain the windows paths to javac.exe and makensis.exe.
Setup the environment with:

$ export PATH
$ cd /mnt/c/path/to/otp src/
$ eval "./otp build env_win32 x64°

This should setup the additional environment variables.

Thisshould do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_w n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path
is cleaned of spaces if possible (using DOS style short names instead), the variables OVERRI DE_TARGET, CC,
CXX, AR and RANLI B are set to their respective wrappers and the directories SERL_TOP/ ert s/ et ¢/ wi n32/
wsl _tool s/vcand$ERL_TOP/ ert s/ et c/ wi n32/ wsl _t ool s areadded first in the PATH.

Now you can check which erlc you have by writingt ype er | ¢ inyour shell. It should residein SERL_TOP/ er t s/
etc/wi n32/wsl _tools.

And running cl . exe should print the Microsoft compiler usage message.

The needed compiler environment variables are setup inside ot p_bui | d viaert s/ et c/ wi n32/ wsl _t ool s/
Set upWBLcr oss. bat . It contains some hardcoded paths, if your installation path is different it can be added to
that file.

2.4.5 Building and Installing

Building is easiest using the ot p_bui | d script:

./otp build configure <optional configure options>
./otp build boot -a

./otp build release -a <installation directory>
./otp build installer win32 <installation directory> # optional

+

Now you will have a file called ot p_wi n32_24. exe or ot p_wi n64_24. exe in the <instal |l ati on
directory>,i.e. SERL_TOP/ r el ease/ wi n32.

Lets get into more detail:

« $./otp_build configure-Thisrunsthenewly generated configure scriptswith options making configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable also makes the compiler becc. sh, which wrapsMSVC+
+, so all configure tests regarding the C compiler gets to run the right compiler. A lot of the tests are not needed
on Windows, but we thought it best to run the whole configure anyway.

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.4 How to Build Erlang/OTP on Windows

e« $./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. When this is done you can run erl from within the source tree;
just type SERL_TOP/ bi n/ er | and you should have the prompt.

* $./otp_build release -a-Buildsacommercia release tree from the source tree. The default is to
putitin $ERL_TOP/ r el ease/ wi n32. You can give any directory as parameter, but it doesn't really matter
if you're going to build a self extracting installer too.

« $./otp_build installer_w n32 - Creates the self extracting installer executable. The executable
ot p_wi n32_24. exe or ot p_wi n64_24. exe will be placed in the top directory of the release created in
the previous step. If no release directory is specified, the release is expected to have been built to $ERL_TOP/
r el ease/ wi n32, which also will be the place where the installer executable will be placed. If you specified
some other directory for the release (i.e. . /otp_build release -a /tnp/erl _rel ease), youre
expected to givethe same parameter here, (i.e.. /ot p_buil d i nstall er_wi n32 /tnp/ erl _rel ease).
You need to have a full NSIS installation and nakensi s. exe in your path for this to work. Once you have
created the installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow
the stepsin the installation wizard. To get all default settings in the installation without any questions asked, you
run the executable with the parameter / S (capital S) likein:

$ cd $ERL TOP
$ release/win32/otp win32 24 /S

or

$ cd $ERL_TOP
$ release/win32/otp win64 24 /S

and after a while Erlang/OTP-24 will have been installed in C:\ Program Fil es\erl 12. 1. 5\, with
shortcuts in the menu etc.

2.4.6 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you can also run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program $ERL_TOP/
bi n/ erl . exe usableand it also uses all the OTP libraries in the source tree.

If you hack the emulator, you can build the emulator executable by standing in $ERL_TOP/ er t s/ ermul at or and
doasmple

$ make opt

Note that you need to haverun (cd $ERL_TOP && eval ~./otp_build env_wi n32") intheparticular
shell before building anything on Windows. After doing a make opt you can test your result by running SERL_ TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t np/ er| _r el ease), you do this (still in
$ERL_TOP/ ert s/ enul at or)

$ make TESTROOT=/tmp/erl release release

That will copy the emulator executables.

To make a debug build of the emulator, you need to recompile both beam dl | (the actual runtime system) and
erl exec. dl | . Dolikethis

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

2.4 How to Build Erlang/OTP on Windows

cd $ERL_TOP

rm bin/win32/erlexec.dll
cd erts/emulator

make debug

cd ../etc

make debug

#H A A A A A

and sometimes

$ cd $ERL TOP
$ make local setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
you do &

1> erlang:system info(system version).

in the erlang shell. If the returned string contains[debug] , you got a debug compiled emulator.
To hack the erlang libraries, you simply do anake opt inthe specific "applications’ directory, like:

$ cd $ERL TOP/lib/stdlib
$ make opt

or even in the source directory...

$ cd $ERL TOP/lib/stdlib/src
$ make opt

Note that you're expected to have a fresh Erlang in your path when doing this, preferably the plain 24 you have
built in the previous steps. You could also add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding
specific libraries. That would give you a good enough Erlang system to compile any OTP erlang code. Setting up the
path correctly is a little bit tricky. You still need to have $ERL_TOP/ ert s/ et ¢/ wi n32/ wsl _t ool s/ vc and
$ERL_TOP/ ert s/ et c/wi n32/ wsl _t ool s before the actual emulator in the path. A typical setting of the path
for using the bootstrap compiler would be:

$ export PATH=$ERL TOP/erts/etc/win32/wsl tools/vc\
:$ERL _TOP/erts/etc/win32/wsl tools:$ERL TOP/bootstrap/bin:$PATH

That should make it possible to rebuild any library without hassle...
If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emulator:

$ cd $ERL_TOP/lib/stdlib
$ make TESTROOT=/tmp/erlang release release

Remember that:

e Windows specific C-code goes in the $ERL_TOP/ ert s/ enul at or/ sys/wi n32, $ERL_TOP/ ert s/
emul ator/drivers/w n32 or $ERL_TOP/ ert s/ et ¢/ wi n32.

* Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of
{win32, } ->
do_windows specific();
Other ->
do fallback or exit()
end,

That's basically all you need to get going.

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

2.4.7 Frequently Asked Questions

Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. Y ou'll need Microsoft's Visual C++ still. A Bourne-shell script (cc.sh) wrapsthe Visual
C++ compiler and runsit from within the WSL environment. All other tools needed to build Erlang are free-ware/
open source, but not the C compiler.

Q: Why haven't you got rid of VC++ then, you ******?

A: Weéll, partly becauseit's agood compiler - really! Actualy it's been possiblein late R11-rel easesto build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
aslong as VC++ gives better performance, the commercial build will be aVC++ one.

Q: Hah, | saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of the filesis compiled using MinGW's GCC and the resulting object code is then converted
to MS VC++ compatible coff using a small C hack. It's because that particular file, beam enu. ¢ benefits
immensely from being able to use the GCC labels-as-values extension, which boosts emulator performance by
up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled using GCC. That particular
source code does not do anything system specific and actually is adopted to the fact that GCC is used to compile
it on Windows.

Q: So now there'saMS VC++ project file somewhere and | can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen.

Q: So how doesit all work then?

A: WSL/Ubuntu is the environment, it's almost like you had a virtual Unix machine inside Windows. Configure,
given certain parameters, then creates makefiles that are used by the environment's gnu-make to built the system.
Most of the actual compilers etc are not, however, WSL tools, so we've written a couple of wrappers (Bourne-
shell scripts), which reside in $ERL_TOP/ et ¢/ wi n32/ wsl _t ool s. They all do conversion of parameters
and switches common in the Unix environment to fit the native Windowstools. Most notableisof coursethe paths,
which in WSL are Unix-like paths with "forward slashes" (/) and no drive letters. The WSL specific command
ws| pat h isused for most of the path conversionsin aWSL environment. Luckily most compilers accept forward
slashes instead of backslashes as path separators, but one still have to get the drive letters etc right, though. The
wrapper scripts are not general in the sense that, for example, cc.sh would understand and translate every possible
gcc option and pass correct optionsto cl.exe. The principleisthat the scriptsare powerful enough to allow building
of Erlang/OTP, no more, no less. They might need extensions to cope with changes during the development of
Erlang, and that's one of the reasons we made them into shell-scripts and not Perl-scripts. We believe they are
easier to understand and change that way.

INSERL_TOP, thereisascriptcaledot p_bui | d. That script handlesthe hassle of giving al theright parameters
toconf i gur e/make and aso helpsyou set up the correct environment variablesto work with the Erlang source
under WSL.

Q: Can | build something that looks exactly as the commercial release?

A: Yes, we use the exact same build procedure.
Q: Which version of WSL and other tools do you use then?

A: We use WSL 1 with Ubuntu 18.04. The GCC we used for 24 was version 7.3-win32. We used Visua studio
2019, Sun's JDK 1.8.0_241, NSIS 3.05, Win32 OpenSSL 1.1.1d and wxWidgets-3.1.3.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

2.5 Patching OTP Applications

2.5 Patching OTP Applications
2.5.1 Introduction

This document describes the process of patching an existing OTP installation with one or more Erlang/OTP
applications of newer versions than aready installed. The tool ot p_pat ch_appl y is available for this specific
purpose. It resides in the top directory of the Erlang/OTP source tree.

Theot p_pat ch_appl y tool utilizestheruntime_dependenciestag in the application resourcefile. Thisinformation
is used to determine if the patch can be installed in the given Erlang/OTP installation directory.

Read more about the version handling introduced in Erlang/OTP release 17, which also describes how to determine
if an installation includes one or more patched applications.

If you want to apply patches of multiple OTP applications that resides in different OTP versions, you have to apply
these patches in multiple steps. It is only possible to apply multiple OTP applications from the same OTP version
at once.

2.5.2 Prerequisites

It's assumed that the reader is familiar with building and installing Erlang/OTP. To be able to patch an application,
the following must exist:

e An Erlang/OTP installation.
» An Erlang/OTP source tree containing the updated applications that you want to patch into the existing Erlang/

OTPinstalation.
2.5.3 Using otp_patch_apply

| Patching applicationsis aone-way process. Create a backup of your OTP installation directory before proceeding.

First of all, build the OTP source tree at $ERL_TOP containing the updated applications.

Before applying a patch you need to do afull build of OTP in the source directory.

If you are building ingi t you first need to generate the conf i gur e scripts:
$./otp build autoconf
Configure and build al applicationsin OTP:

$ configure
$ make

or

$./otp build configure
$./otp build boot -a

If you have installed documentation in the OTP installation, also build the documentation:

$ make docs

38 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Patching OTP Applications

After the successful build it's time to patch. The source tree directory, the directory of the installation and the
applications to patch are given as arguments to ot p_pat ch_appl y. The dependencies of each application are
validated against the applications in the installation and the other applications given as arguments. If a dependency
error is detected, the script will be aborted.

Theot p_pat ch_appl y syntax:

$ otp patch apply -s <Dir> -i <Dir> [-1 <Dir>] [-c] [-f] [-h] \
[-n] [-v] <Appl> [... <AppN>]

-s <Dir> -- OTP source directory that contains build results.
-i <Dir> -- OTP installation directory to patch.
-1 <Dir> -- Alternative OTP source library directory path(s)

containing build results of OTP applications.
Multiple paths should be colon separated.

-C -- Cleanup (remove) old versions of applications
patched in the installation.
-f -- Force patch of application(s) even though

dependencies are not fulfilled (should only be
considered in a test environment).

-h -- Print help then exit.

-n -- Do not install documentation.
-V -- Print version then exit.
<AppX> -- Application to patch.

Environment Variable:
ERL LIBS -- Alternative OTP source library directory path(s)
containing build results of OTP applications.
Multiple paths should be colon separated.

Note:

The complete build environment is required while running ot p_pat ch_appl vy.

Note:

All source directoriesidentified by - s and - | should contain build results of OTP applications.

For example, if the user wants to install patched versions of mesi a and ssl built in/ hone/ e/ gi t/ ot p into
the OTPinstallation located in/ opt / er | ang/ ny_ ot p type

$ otp patch apply -s /home/me/git/otp -i /opt/erlang/my otp \
mnesia ssl

Note:

If the list of applications contains core applications, i.eert s, kernel ,stdli b orsasl,thel nstal | script
in the patched Erlang/OTP installation must be rerun.

The patched applications are appended to the list of installed applications. Take a look at <l nstal | Di r >/
rel eases/ OTP-REL/ i nstal | ed_application_versions.

2.5.4 Sanity check

The application dependencies can be checked using the Erlang shell. Application dependencies are verified among
installed applications by ot p_pat ch_appl y, but these are not necessarily those actually loaded. By calling
system i nformation: sanity_check() onecan validate dependencies among applications actually loaded.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

2.5 Patching OTP Applications

1> system information:sanity check().
ok

Please take alook at the reference of sanity _check() for more information.

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 System Principles

3 System Principles

3.1 System Principles
3.1.1 Starting the System

An Erlang runtime system is started with command er | :

% erl
Erlang/0TP 17 [erts-6.0] [hipe] [smp:8:8]

Eshell V6.0 (abort with ~G)
1>

er | understands a number of command-line arguments, see the erl(1) manual pagein ERTS. Some of them are also
described in this chapter.

Application programs can access the values of the command-line arguments by calling the function
init:get_argunent (Key) orinit:get_argunents().Seetheinit(3) manual pagein ERTS.

3.1.2 Restarting and Stopping the System
The runtime system is halted by calling hal t / 0, 1. For details, see the erlang(3) manual page in ERTS.
Themodulei ni t contains functions for restarting, rebooting, and stopping the runtime system:

init:restart()
init:reboot()
init:stop()

For details, see the init(3) manual pagein ERTS.
The runtime system terminates if the Erlang shell is terminated.

3.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applicationsto start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command-line flag - boot . The extension . boot isto be omitted. For
example, using the boot script st art _al | . boot :

%

s erl -boot start all

If no boot script is specified, it defaultsto ROOT/ bi n/ st ar t , see Default Boot Scripts.

The command-line flag - i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

3.1 System Principles

% erl -init debug
{progress,preloaded}
{progress,kernel load completed}
{progress,modules loaded}
{start,heart}

{start, logger}

For a detailed description of the syntax and contents of the boot script, seethescri pt (4) manual pagein SASL.

Default Boot Scripts
Erlang/OTP comes with these boot scripts:

e« start_cl ean. boot - Loadsthe code for and starts the applications Kernel and STDLIB.
e start_sasl . boot - Loadsthe codefor and starts the applications Kernel, STDLIB, and SASL).

* no_dot _erl ang. boot - Loadsthe code for and starts the applications Kernel and STDLIB. Skips
loading thefile . er | ang. Useful for scripts and other tools that are to behave the same irrespective of user
preferences.

Which of start_cl ean and st art _sasl| to use as default is decided by the user when installing Erlang/OTP
using I nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, thenst art _cl ean isused, otherwise st art _sasl| isused. A copy of the selected boot script is
made, named st art . boot and placed in directory ROOT/ bi n.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. Thisis true especially when running Erlang
in embedded mode, see Code Loading Strategy.

A boot script can be written manually. However, it is recommended to create a boot script by generating it from a
releaseresourcefileName. r el , using thefunctionsyst ool s: make_scri pt/ 1, 2. Thisrequiresthat the source
code is structured as applications according to the OTP design principles. (The program does not have to be started
in terms of OTP applications, but can be plain Erlang).

For moreinformation about . r el files, see OTP Design Principles and the rel(4) manual pagein SASL.

The binary boot script file Nane. boot is generated from the boot script file Nane. scri pt, using the function
syst ool s: scri pt 2boot (Fil e).

3.1.4 Code Loading Strategy

The runtime system can be started in either embedded or inter active mode. Which one is decided by the command-
lineflag - node.

% erl -mode embedded

Default modeisi nt er act i ve and extra- node flags are ignored.
The mode properties are as follows:

* Inembedded mode, al code isloaded during system startup according to the boot script. (Code can also be
loaded later by explicitly ordering the code server to do so.)

« Ininteractive mode, the code is dynamically loaded when first referenced. When acall to afunction in amodule
is made, and the module is not loaded, the code server searches the code path and |oads the module into the
system.

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.2 Error Logging

Initially, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT is the installation directory of Erlang/OTP. Directories can be named Name[- Vsn] . The code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -
Vsn suffix is optiona. If an ebi n directory exists under the Narre[- Vsn] directory, this directory is added to the
code path.

The code path can be extended by using the command-lineflags-pa Directories and-pz Directories.
Theseadd Di r ect or i es to the head or the end of the code path, respectively. Example:

% erl -pa /home/arne/mycode

The code server module code contains a number of functions for modifying and checking the search path, see the
code(3) manual pagein Kernel.

3.1.5 File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

Module .erl Erlang Reference Manual
Includefile . hrl Erlang Reference Manual
Release resource file .rel rel(4) manual pagein SASL
Application resource file .app app(4) manual page in Kernel
Boot script .script script(4) manual pagein SASL
Binary boot script . boot -

Configuration file .config config(4) manual page in Kernel
Application upgradefile . appup appup(4) manual pagein SASL
Release upgrade file relup relup(4) manual pagein SASL

Table 1.1: File Types

3.2 Error Logging

3.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating because of an uncaught
error exception, is by default written to terminal (tty):

=ERROR REPORT==== 9-Dec-2003::13:25:02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,31},[{m,f,1},{shell,eval loop,2}1}

The error information is handled by Logger, which is part of the Kernel application.
The exit reasons (such asbadar g) used by the runtime system are described in Errors and Error Handling.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

3.3 Creating and Upgrading a Target System

For information about Logger and its user interface, see the logger(3) manual page and the Logging section in the
Kernel User's Guide. The system can be configured so that log events are written to file or to tty, or both. In addition,
user-defined applications can send and format log events using Logger.

3.2.2 Log events from OTP behaviours

The standard behaviours (super vi sor, gen_ser ver, and so on) send progress and error information to Logger.
Progress reports are by default not logged, but can be enabled by setting the primary log level to i nf o, for example
by using the Kernel configuration parameter | ogger _| evel . Supervisor reports, crash reports and other error and
information reportsare by default logged through thelog handler which is set up when the Kernel application is started.

Prior to Erlang/OTP 21.0, supervisor, crash, and progress reports were only logged when the SASL application was
running. This behaviour can, for backwards compatibility, be enabled by setting the Kernel configuration parameter
ogger _sasl _conpati bl e tot r ue. For moreinformation, see SASL Error Logging inthe SASL User's Guide.

% erl -kernel logger level info
Erlang/0TP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

=PROGRESS REPORT==== 8-Jun-2018::16:54:19.916404 ===
application: kernel
started at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.922908 ===
application: stdlib
started at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.925755 ===
supervisor: {local,kernel safe sup}
started: [{pid,<0.74.0>},
{id,disk log sup},
{mfargs,{disk log sup,start link,[]}},
{restart type,permanent},
{shutdown, 1000},
{child type,supervisor}]
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.926056 ===
supervisor: {local,kernel safe sup}
started: [{pid,<0.75.0>},
{id,disk log server},
{mfargs,{disk log server,start link,[]}},
{restart type,permanent},
{shutdown, 2000},
{child type,worker}]
Eshell V10.0 (abort with "G)
1>

3.3 Creating and Upgrading a Target System

When creating a system using Erlang/OTP, the simplest way is to install Erlang/OTP somewhere, install the
application-specific code somewhere el se, and then start the Erlang runtime system, making sure the code path includes
the application-specific code.

It is often not desirable to use an Erlang/OTP system as is. A developer can create new Erlang/OTP-compliant
applications for a particular purpose, and several original Erlang/OTP applications can be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applications are removed and new applications are included. Documentation and source code isirrelevant
and is therefore not included in the new system.

This chapter is about creating such a system, which is called atarget system.
The following sections deal with target systems with different requirements of functionality:
e A basictarget system that can be started by calling the ordinary er | script.

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

A simpletarget system where aso code replacement in runtime can be performed.

« Anembedded target system where there is also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

Hereisonly considered the case when Erlang/OTP is running on a UNIX system.

The sasl application includes the example Erlang module t ar get _syst em er |, which contains functions for
creating and installing atarget system. Thismodule is used in the following examples. The source code of the module
islisted in Listing of target_system.erl

3.3.1 Creating a Target System

It is assumed that you have aworking Erlang/OTP system structured according to the OTP design principles.

Step 1. Create a . r el file (see the rel(4) manual page in SASL), which specifies the ERTS version and lists all
applicationsthat are to beincluded in the new basic target system. An exampleisthefollowingnysyst em r el file:

%% mysystem.rel

{release,
{"MYSYSTEM", "FIRST"},
{erts, "5.10.4"},
[{kernel, "2.16.4"},
{stdlib, "1.19.4"},
{sasl, "2.3.4"},
{pea, "1.0"}1}.

Thelisted applications are not only original Erlang/OTP applications but possibly also new applications that you have
written (here exemplified by the application Pea (pea)).

Step 2. Start Erlang/OTP from the directory wherethe nysyst em r el fileresides:

os> erl -pa /home/user/target system/myapps/pea-1.0/ebin

Here also the path to the pea- 1. 0 ebin directory is provided.
Step 3. Create the target system:

1> target system:create("mysystem").

Thefunctiont ar get _syst em cr eat e/ 1 performs the following:

* Readsthefilenysyst em r el and createsanew filepl ai n. r el that isidentical to the former, except that
it only liststhe Kernel and STDLIB applications.

 Fromthefilesnysystem rel andpl ai n. rel createsthefilesnmysyst em scri pt, mysyst em boot,
pl ai n.scri pt,andpl ai n. boot throughacall tosyst ool s: make_scri pt/ 2.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

3.3 Creating and Upgrading a Target System

Creates the file nysystem tar. gz by acal to syst ool s: make_t ar/ 2. That file has the following
contents:

erts-5.10.4/bin/
releases/FIRST/start.boot
releases/FIRST/mysystem.rel
releases/mysystem.rel
lib/kernel-2.16.4/
lib/stdlib-1.19.4/
lib/sasl-2.3.4/
lib/pea-1.0/

Thefiler el eases/ FI RST/ st art . boot isacopy of our nysyst em boot

The release resource file mysyst em r el is duplicated in the tar file. Originally, this file was only stored in
ther el eases directory to make it possible for ther el ease_handl er to extract this file separately. After
unpacking thetar file,r el ease_handl er would automatically copy thefiletor el eases/ FlI RST. However,
sometimes the tar file is unpacked without involving the r el ease_handl er (for example, when unpacking
thefirst target system). The fileistherefore now instead duplicated in the tar file so no manual copying is needed.
Creates the temporary directory t np and extractsthetar filenysyst em t ar . gz into that directory.
Deletesthefileser | andstart fromt np/ erts-5. 10. 4/ bi n. Thesefiles are created again from source
when installing the release.

Createsthe directory t np/ bi n.

Copiesthe previously created filepl ai n. boot tot np/ bi n/ start. boot .
Copiesthefilesepnd,run_erl ,andt o_er| fromthedirectoryt mp/ erts-5. 10. 4/ bi n to the directory
t np/ bi n.

Createsthe directory t np/ | og, which isused if the system is started as embedded with thebi n/ st ar t
script.

Createsthefilet np/ r el eases/ start _er| . dat a with the contents "5.10.4 FIRST". Thisfileisto be
passed as datafiletothest art _er| script.

Recreatesthefilemysyst em t ar . gz from the directories in the directory t np and removest np.

3.3.2 Installing a Target System
Step 4. Install the created target system in a suitable directory.

2> target system:install("mysystem", "/usr/local/erl-target").

Thefunctiont ar get _system i nstal | / 2 performsthe following:

Extractsthetar filenysyst em t ar . gz into thetarget directory / usr/ | ocal / erl -t arget .

In the target directory readsthefiler el eases/ start _er| . dat a to find the Erlang runtime system
version ("5.10.4").

Substitutes %=1 NAL_ ROOTDI R%and EMX%for / usr/ 1 ocal / er| -t ar get and beam respectively, in
thefileser| . src,start.src,andstart _erl.src of thetargetert s- 5. 10. 4/ bi n directory, and
putstheresulting fileser | ,start,andrun_er| inthetarget bi n directory.

Finally thetarget r el eases/ RELEASES fileis created from datain thefiler el eases/ nysystemrel .

3.3.3 Starting a Target System

Now we have atarget system that can be started in various ways. We start it as abasic tar get system by invoking:

os> /usr/local/erl-target/bin/erl

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

Here only the Kernel and STDLIB applications are started, that is, the system is started as an ordinary devel opment
system. Only two files are needed for all thisto work:

e bin/erl (obtainedfromerts-5.10.4/bin/erl.src)

e bin/start.boot (acopy of pl ai n. boot)

We can aso start a distributed system (requires bi n/ epnd).
To start all applications specified inthe original nysyst em r el file, useflag - boot asfollows:

0os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/releases/FIRST/start

We start asimpletarget system asabove. The only differenceisthat also thefiler el eases/ RELEASES is present
for code replacement in runtime to work.

To start an embedded target system, the shell script bi n/ st art isused. The script callsbi n/ run_er | , which
inturncalsbi n/ start _er!| (roughly,start _er| isanembedded variant of er |).

The shell script st ar t , which is generated from erts-5.10.4/bin/start.src during installation, is only an example. Edit
it to suite your needs. Typicaly it is executed when the UNIX system boots.

run_er!| isawrapper that provides logging of output from the runtime system to file. It also provides a simple
mechanism for attaching to the Erlang shell (t o_er |).

start _erl requires:

e Theroot directory ("/ usr/ 1l ocal /erl-target")
e Thereleasesdirectory ("/ usr/l ocal /erl -target/rel eases”
e Thelocation of thefilestart _erl . data

It performs the following:

* Readsthe runtime system version (" 5. 10. 4") and release version (" FI RST") from thefile
start _erl.data.

« Startsthe runtime system of the version found.

* Providestheflag - boot specifying the boot file of the release version found (" r el eases/ FI RST/
start. boot™).

start _erl also assumes that there is sys. confi g in the release version directory (" r el eases/ FI RST/
sys. confi g"). That isthetopic of the next section.

Thestart _er| shel scriptisnormally not to be altered by the user.

3.3.4 System Configuration Parameters

As was mentioned in the previous section, st art _er| requiresasys. confi g in the release version directory
("rel eases/ FI RST/ sys. confi g"). If there is no such file, the system start fails. Such a file must therefore
also be added.

If you have system configuration datathat is neither file-location-dependent nor site-dependent, it can be convenient to
createsys. confi g early, soit becomespart of thetarget systemtar filecreatedby t ar get _system creat e/ 1.
Infact, if youinthe current directory create not only thefilenysyst em rel , but alsofilesys. confi g, thelatter
fileistacitly put in the appropriate directory.

However, it can also be convenient to replace variables in within asys. conf i g on the target after unpacking but
beforerunning therelease. If you haveasys. conf i g. sr c itwill beincluded andisnot required to beavalid Erlang
termfilelike sys. conf i g. Before running the release you must have avalid sys. conf i g in the same directory,
sousing sys. confi g. src requires having some tool to populate what is needed and write sys. conf i g to disk
before booting the release.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

3.3 Creating and Upgrading a Target System

3.3.5 Differences From the Install Script

The previous i nst al | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makes the release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering |ocation-dependent files.

3.3.6 Creating the Next Version
In this example the Pea application has been changed, and so are the applications ERTS, Kernel, STDLIB and SASL.
Step 1. Create thefile. rel :

%% mysystem2.rel
{release,
{"MYSYSTEM", "SECOND"},
{erts, "6.0"},
[{kernel, "3.0"},
{stdlib, "2.0"},
{sasl, "2.4"},
{pea, "2.0"}1}.

Step 2. Create the application upgrade file (see the appup(4) manual pagein SASL) for Pea, for example:

%% pea.appup

II2.0II’
[{"1.0",[{load module,pea lib}]}],
[{"1.0",[{load module,pea lib}]}1}.

-~

Step 3. From the directory where the file nysyst en®. r el resides, start the Erlang/OTP system, giving the path
to the new version of Pea:

os> erl -pa /home/user/target system/myapps/pea-2.0/ebin

Step 4. Create the release upgrade file (see the relup(4) manual pagein SASL):

1> systools:make relup("mysystem2",["mysystem"],["mysystem"],
[{path, ["/home/user/target system/myapps/pea-1.0/ebin",
"/my/old/erlang/lib/*/ebin"]1}1).

Here" nmysyst ent' isthebasereleaseand " mysyst enR" isthe release to upgrade to.

Thepat h option is used for pointing out the old version of all applications. (The new versions are already in the code
path - assuming of course that the Erlang node on which thisis executed is running the correct version of Erlang/OTP.)

Step 5. Create the new release:

2> target system:create("mysystem2").
Given that the filer el up generated in Step 4 is now located in the current directory, it is automatically included in
the release package.

3.3.7 Upgrading the Target System

This part is done on the target node, and for this example we want the node to be running as an embedded system with
the- heart option, allowing automatic restart of the node. For more information, see Starting a Target System.

Weadd - heart tobin/start:

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

#!/bin/sh
ROOTDIR=/usr/local/erl-target/

if [-z "$RELDIR"]
then
RELDIR=$RO0OTDIR/releases
fi
START ERL DATA=${1l:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl -daemon /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl $ROOTDIR\
$RELDIR $START ERL DATA -heart"

We use the simplest possible sys. conf i g, whichwestoreinr el eases/ Fl RST:

%% sys.config
[1.

Finally, to prepare the upgrade, we must put the new release package in the r el eases directory of the first target
system:

0s> cp mysystem2.tar.gz /usr/local/erl-target/releases

Assuming that the node has been started as follows:

os> /usr/local/erl-target/bin/start

It can be accessed as follows:

os> /usr/local/erl-target/bin/to erl /tmp/erlang.pipe.l

Logscanbefoundin/ usr/ | ocal /erl -target/| og. Thisdirectory isspecified asanargumenttor un_er | in
the start script listed above.

Step 1. Unpack the release:

1> {ok,Vsn} = release handler:unpack release("mysystem2").

Step 2. Install the release:

2> release handler:install release(Vsn).

{continue after restart,"FIRST",[]}

heart: Tue Apr 1 12:15:10 2014: Erlang has closed.

heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/ne
[End]

The above return value and output after the call tor el ease_handl er:i nstal | _r el ease/ 1 means that the
rel ease_handl er has restarted the node by using heart . This is always done when the upgrade involves a
change of the applications ERTS, Kernel, STDLIB, or SASL. For more information, see Upgrade when Erlang/OTP
has Changed.

The node is accessible through a new pipe:

0os> /usr/local/erl-target/bin/to _erl /tmp/erlang.pipe.2

Check which releases there are in the system:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

3.3 Creating and Upgrading a Target System

1> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
current},

{"MYSYSTEM" , "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
permanent}]

Our new release, "SECOND", isnow the current release, but we can al so seethat our "FIRST" releaseis still permanent.
Thismeansthat if the node would be restarted now, it would come up running the "FIRST" release again.

Step 3. Make the new release permanent:

2> release _handler:make permanent("SECOND").

Check the releases again:

3> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
permanent},

{"MYSYSTEM", "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"1,
old}]

We see that the new release version isper manent , so it would be safe to restart the node.

3.3.8 Listing of target_system.erl
This module can also be found in the exanpl es directory of the SASL application.

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

-module(target system).
-export([create/1l, create/2, install/2]).

Note: RelFileName below is the *stem* without trailing .rel,
.script etc.

o o of
o o o°

create(RelFileName)

@ of
o® o°

create(RelFileName) ->
create(RelFileName,[]).

create(RelFileName,SystoolsOpts) ->
RelFile = RelFileName ++ ".rel",
Dir = filename:dirname(RelFileName),
PlainRelFileName = filename:join(Dir,"plain"),
PlainRelFile = PlainRelFileName ++ ".rel",

io:fwrite("Reading file: ~tp ...~n", [RelFile]),
{ok, [RelSpec]} = file:consult(RelFile),
io:fwrite("Creating file: ~tp from ~tp ...~n",

[PlainRelFile, RelFile]),
{release,
{RelName, RelVsn},
{erts, ErtsVsn},
AppVsns} = RelSpec,
PlainRelSpec = {release,
{RelName, RelVsn},
{erts, ErtsVsn},
lists:filter(fun({kernel, }) ->
true;
({stdlib, }) ->
true;
() ->
false
end, AppVsns)

}I
{ok, Fd} = file:open(PlainRelFile, [write]),
io:fwrite(Fd, "~p.~n", [PlainRelSpecl]),
file:close(Fd),
io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[PlainRelFileName,PlainRelFileName]),
make script(PlainRelFileName,SystoolsOpts),
io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[RelFileName, RelFileName]),
make script(RelFileName,SystoolsOpts),

TarFileName = RelFileName ++ ".tar.gz",

io:fwrite("Creating tar file ~tp ...~n", [TarFileNamel]),
make tar(RelFileName,SystoolsOpts),

TmpDir = filename:join(Dir,"tmp"),
io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
file:make dir(TmpDir),

io:fwrite("Extracting ~tp into directory ~tp ...~n", [TarFileName, TmpDir]),
extract tar(TarFileName, TmpDir),

TmpBinDir = filename:join([TmpDir, "bin"1),

ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),

io:fwrite("Deleting \"erl\" and \"start\" in directory ~tp ...~n",
[ErtsBinDir]),

file:delete(filename:join([ErtsBinDir, "erl"]))

file:delete(filename:join([ErtsBinDir, "start"])),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

3.3 Creating and Upgrading a Target System

io:fwrite("Creating temporary directory ~tp ...~n", [TmpBinDir]),
file:make dir(TmpBinDir),

io:fwrite("Copying file \"~ts.boot\" to ~tp ...~n",
[PlainRelFileName, filename:join([TmpBinDir, "start.boot"])1),
copy file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),

io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
"~tp to ~tp ...~n",
[ErtsBinDir, TmpBinDir]),

copy file(filename:join([ErtsBinDir, "epmd"]),
filename:join([TmpBinDir, "epmd"]), [preservel),

copy file(filename:join([ErtsBinDir, "run_erl"]),
filename:join([TmpBinDir, "run erl"]), [preserve]),

copy file(filename:join([ErtsBinDir, "to erl"]),
filename:join([TmpBinDir, "to erl"]), [preserve]),

%% This is needed if 'start' script created from 'start.src' shall
%% be used as it points out this directory as log dir for 'run erl'
TmpLogDir = filename:join([TmpDir, "log"l),

io:fwrite("Creating temporary directory ~tp ...~n", [TmpLogDir]),
ok = file:make dir(TmpLogDir),

StartErlDataFile = filename:join([TmpDir, "releases", "start erl.data"l),
io:fwrite("Creating ~tp ...~n", [StartErlDataFile]),

StartErlData = io lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),

write file(StartErlDataFile, StartErlData),

io:fwrite("Recreating tar file ~tp from contents in directory ~tp ...~n",
[TarFileName, TmpDir]),

{ok, Tar} = erl tar:open(TarFileName, [write, compressed]),

%% {0k, Cwd} = file:get cwd(),

%% file:set cwd("tmp"),

ErtsDir = "erts-"++ErtsVsn,

erl tar:add(Tar, filename:join(TmpDir,"bin"), "bin", [1),

erl tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),

erl tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),

erl tar:add(Tar, filename:join(TmpDir,"lib"), "lib", [1),

erl tar:add(Tar, filename:join(TmpDir,"log"), "log", [1),

erl_tar:close(Tar),

%% file:set cwd(Cwd),

io:fwrite("Removing directory ~tp ...~n",[TmpDir]),

remove dir tree(TmpDir),

ok.

install(RelFileName, RootDir) ->
TarFile = RelFileName ++ ".tar.gz",

io:fwrite("Extracting ~tp ...~n", [TarFile]),
extract tar(TarFile, RootDir),
StartErlDataFile = filename:join([RootDir, "releases", "start erl.data"]),

{ok, StartErlData} = read txt file(StartErlDataFile),

[ErlVsn, RelVsn|] = string:tokens(StartErlData, " \n"),

ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),

BinDir = filename:join([RootDir, "bin"]),

io:fwrite("Substituting in erl.src, start.src and start_erl.src to "

"form erl, start and start erl ...\n"),

subst src_scripts(["erl", "start", "start erl"], ErtsBinDir, BinDir,
[{"FINAL ROOTDIR", RootDir}, {"EMU", "beam"}],
[preserve]),

%%! Workaround for pre OTP 17.0: start.src and start erl.src did

%%! not have correct permissions, so the above 'preserve' option did not help
ok = file:change mode(filename:join(BinDir,"start"),b8#0755),

ok = file:change mode(filename:join(BinDir,"start erl"),8#0755),

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

io:fwrite("Creating the RELEASES file ...\n"),
create RELEASES(RootDir, filename:join([RootDir, "releases",
filename:basename(RelFileName)])).
%% LOCALS

% make script(RelFileName,Opts)

® o°
o°

make script(RelFileName,Opts) ->
systools:make script(RelFileName, [no_module tests,
{outdir, filename:dirname(RelFileName)}
|Opts]).

%% make_tar(RelFileName,Opts)

o°
o°

make tar(RelFileName,Opts) ->
RootDir = code:root dir(),
systools:make tar(RelFileName, [{erts, RootDir},
{outdir, filename:dirname(RelFileName)}
|Opts]).

% extract tar(TarFile, DestDir)

® o°
o°

extract tar(TarFile, DestDir) ->
erl tar:extract(TarFile, [{cwd, DestDir}, compressed]).

create RELEASES(DestDir, RelFileName) ->
release handler:create RELEASES(DestDir, RelFileName ++ ".rel").

subst src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
lists:foreach(fun(Script) ->
subst src _script(Script, SrcDir, DestDir,
Vars, Opts)
end, Scripts).

subst src_script(Script, SrcDir, DestDir, Vars, Opts) ->
subst file(filename:join([SrcDir, Script ++ ".src"]),
filename:join([DestDir, Scriptl]),
Vars, Opts).

subst file(Src, Dest, Vars, Opts) ->
{ok, Conts} = read txt file(Src),
NConts = subst(Conts, Vars),
write file(Dest, NConts),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FileInfo);
false ->
ok
end.

% subst(Str, Vars)

Vars = [{Var, Val}]

Var = Val = string()

Substitute all occurrences of %Var% for Val in Str, using the list
of variables in Vars.

A ® ® o P
o® o® o° o° o°

1]

ubst(Str, Vars) ->
subst(Str, Vars, []).

subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->

subst var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 53

3.3 Creating and Upgrading a Target System

subst var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when C == § ->

subst var([C| Rest], Vars, Result, []);
subst([C| Rest], Vars, Result) ->

subst(Rest, Vars, [C| Result]);
subst([], Vars, Result) ->

lists:reverse(Result).

subst var([$%| Rest], Vars, Result, VarAcc) ->
Key = lists:reverse(VarAcc),
case lists:keysearch(Key, 1, Vars) of
{value, {Key, Value}} ->
subst(Rest, Vars, lists:reverse(Value, Result));
false ->
subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
end;
subst var([C| Rest], Vars, Result, VarAcc) ->
subst var(Rest, Vars, Result, [C| VarAccl);
subst var([], Vars, Result, VarAcc) ->
subst([], Vars, [VarAcc ++ [$%| Result]]).

copy file(Src, Dest) ->
copy file(Src, Dest, []).

copy file(Src, Dest, Opts) ->
{ok, } = file:copy(Src, Dest),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FileInfo);
false ->
ok
end.

write file(FName, Conts) ->
Enc = file:native name_encoding(),
{ok, Fd} = file:open(FName, [write]),
file:write(Fd, unicode:characters to binary(Conts,Enc,Enc)),
file:close(Fd).

read txt file(File) ->
{ok, Bin} = file:read file(File),
{ok, binary to list(Bin)}.

remove dir tree(Dir) ->
remove all files(".", [Dir]).

remove all files(Dir, Files) ->
lists:foreach(fun(File) ->
FilePath = filename:join([Dir, File]),
case filelib:is dir(FilePath) of
true ->
{ok, DirFiles} = file:list dir(FilePath),
remove all files(FilePath, DirFiles),
file:del dir(FilePath);
->
file:delete(FilePath)
end
end, Files).

54 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.4 Upgrade when Erlang/OTP has Changed

3.4 Upgrade when Erlang/OTP has Changed

3.4.1 Introduction

As of Erlang/OTP 17, most applications deliver a valid application upgrade file (appup). In earlier releases,
a majority of the applications in Erlang/OTP did not support upgrade. Many of the applications use the
restart_applicati oninstruction. These are applicationsfor whichit isnot crucial to support real soft upgrade,
for example, tools and library applications. Ther est art _appl i cat i on instruction ensures that all modulesin
the application are reloaded and thereby running the new code.

3.4.2 Upgrade of Core Applications

ThecoreapplicationsERTS, Kernel, STDLIB, and SASL never allow real soft upgrade, but requirethe Erlang emul ator
toberestarted. Thisisindicatedtother el ease_handl er by theupgradeinstructionr est art _new_enul at or.
Thisinstruction is always the very first instruction executed, and it restarts the emulator with the new versions of the
above mentioned core applications and the old versions of all other applications. When the node is back up, all other
upgrade instructions are executed, making sure each application is finally running its new version.

It might seem strange to do a two-step upgrade instead of just restarting the emulator with the new version of all
applications. The reason for this design decision is to alow code_change functions to have side effects, for
example, changing data on disk. It also guarantees that the upgrade mechanism for non-core applications does not
differ depending on whether or not core applications are changed at the same time.

If, however, the more brutal variant is preferred, the the rel ease upgrade file can be handwritten using only the single
upgradeinstructionr est art _ermul at or . Thisinstruction, in contrasttor est art _new_enul at or , causesthe
emulator to restart with the new versions of all applications.

Note: If other instructions are included before r est art _enul at or in the handwritten r el up file, they are
executed in the old emulator. This is a big risk since there is no guarantee that new beam code can be loaded into
the old emulator. Adding instructions after r est art _erul at or has no effect asthe r el ease_handl er will
not execute them.

For information about the release upgrade file, see the relup(4) manual page in SASL. For more information about
upgrade instructions, see the appup(4) manual pagein SASL.

3.4.3 Applications that Still do Not Allow Code Upgrade

A few applications, such as HiPE, do not support upgrade. Thisisindicated by an application upgrade file containing
only {Vsn,[],[]}.Any attempt at creating a release upgrade file with such input fails. The only way to force an
upgrade involving applications like thisis to handwrite the file r el up, preferably as described above with only the
restart_emul at or instruction.

3.5 Versions

3.5.1 OTP Version

Asof OTPrelease 17, the OTP release number corresponds to the major part of the OTP version. The OTP version as
aconcept was introduced in OTP 17. The version scheme used is described in detail in Version Scheme.

OTP of a specific version is a set of applications of specific versions. The application versions identified by an OTP
version corresponds to application versions that have been tested together by the Erlang/OTP team at Ericsson AB.
An OTP system can, however, be put together with applications from different OTP versions. Such a combination
of application versions has not been tested by the Erlang/OTP team. It is therefore always preferred to use OTP
applicationsfrom onesingle OTP version.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 55

3.5 Versions

Release candidates have an - r c<N> suffix. The suffix - r cO is used during development up to the first release
candidate.

Retrieving Current OTP Version

Inan OTP source code tree, the OTP version can beread from thetext file<OTP sour ce r oot >/ OTP_VERSI ON.
The absolute path to the file can be constructed by calling fil ename:join([code:root _dir(),
"OTP_VERSI ON']) .

In an installed OTP development system, the OTP version can be read from the text file <OTP
installation root>/releases/<OIP release nunber>/ OTP_VERSI ON. The absolute path
to the file can by constructed by caling fil enane:join([code:root _dir(), "rel eases",
erl ang: systeminfo(otp_release), "OIP_VERSION']).

If the version read from the OTP_VERSI ONfilein adevelopment system hasa* * suffix, the system has been patched
using the ot p_pat ch_appl y tool. In this case, the system consists of application versions from multiple OTP
versions. Theversion preceding the* * suffix correspondsto the OTP version of the base system that has been patched.
Notice that if a development system is updated by other meansthan ot p_pat ch_appl y, the file OTP_VERSI ON
can identify an incorrect OTP version.

No OTP_VERSI ONfileis placed in a target system created by OTP tools. This since one easily can create a target
system where it is hard to even determine the base OTP version. You can, however, place such afile there if you
know the OTP version.

OTP Versions Table

The text file <OTP source root>/otp_versions.table, whichis part of the source code, contains
information about al OTP versions from OTP 17.0 up to the current OTP version. Each line contains information
about application versions that are part of a specific OTP version, and has the following format:

<0tpVersion> : <ChangedAppVersions> # <UnchangedAppVersions> :

<Ot pVer si on> hasthe format OTP- <VSN>, that is, the same as the git tag used to identify the source.

<ChangedAppVer si ons> and <UnchangedAppVer si ons> are space-separated lists of application versions
and has the format <appl i cat i on>- <vsn>.

e <ChangedAppVer si ons> corresponds to changed applications with new version numbersin this OTP
version.

* <UnchangedAppVer si ons> corresponds to unchanged application versionsin this OTP version.

Both of them can be empty, but not at the sametime. If <ChangedAppVer si ons> isempty, no changes have been
made that change the build result of any application. This could, for example, be a pure bug fix of the build system.
The order of lines is undefined. All white-space characters in this file are either space (character 32) or line-break
(character 10).

By using ordinary UNIX toolslike sed and gr ep one can easily find answers to various questions like:
e Which OTPversionsareker nel - 3. 0 part of?

$ grep ' kernel-3\.0 ' otp_versions.table
¢ Inwhich OTPversionwasker nel - 3. 0 introduced?

$ sed 's/#.*//;] kernel-3\.0 /!d" otp_versions.table

The above commands give a bit more information than the exact answers, but adequate information when manually
searching for answers to these questions.

56 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.5 Versions

Theformat of theot p_ver si ons. t abl e might be subject to changes during the OTP 17 release.

3.5.2 Application Version

Asof OTP 17.0 application versions use the same version scheme as the OTP version. Application versions part of a
release candidate will however not have an - r c<N> suffix as the OTP version. Also note that a major increment in
an application version does not necessarily imply amajor increment of the OTP version. This depends on whether the
major change in the application is considered as a major change for OTP as awhole or not.

3.5.3 Version Scheme

The version scheme was changed as of OTP 17.0. This implies that application versions used prior to OTP 17.0
do not adhere to this version scheme. A list of application versions used in OTP 17.0 is included at the end of
this section

In the norma case, a version is constructed as <Maj or >. <M nor >. <Pat ch>, where <Maj or > is the most
significant part.

However, more dot-separated parts than this can exist. The dot-separated parts consist of non-negative
integers. If al parts less significant than <M nor > equas 0, they are omitted. The three normal parts
<Mnj or >. <M nor >. <Pat ch> are changed as follows:

e <Mnj or > - Increases when major changes, including incompatibilities, are made.
e <M nor > - Increases when new functionality is added.
e <Pat ch> - Increases when pure bug fixes are made.

When apart in the version number increases, all less significant parts are set to 0.

An application version or an OTP version identifies source code versions. That is, it implies nothing about how the
application or OTP has been built.

Order of Versions

Version numbersin general are only partially ordered. However, normal version numbers (with three parts) asof OTP
17.0 have atotal or linear order. This applies both to normal OTP versions and normal application versions.

When comparing two version numbers that have an order, one compare each part as ordinary integers from the most
significant part to less significant parts. The order is defined by the first parts of the same significance that differ.
An OTP version with alarger version includes all changes that are part of a smaller OTP version. The same goes for
application versions.

In general, versions can have more than three parts. The versions are then only partialy ordered. Such versions are
only used when branching off from another branch. When an extra part (out of the normal three parts) is added to
a version number, a new branch of versions is made. The new branch has a linear order against the base version.
However, versions on different branches have no order, and therefore one can only conclude that they all include what
isincluded in their closest common ancestor. When branching multiple times from the same base version, 0 parts are
added between the base version and the least significant 1 part until a unique version is found. Versions that have an
order can be compared as described in the previous paragraph.

Anexampleof branched versions: Theversion6. 0. 2. 1 isabranched versionfromthebaseversion6. 0. 2. Versions
ontheform 6. 0. 2. <X> can be compared with normal versions smaller than or equal to 6. 0. 2, and other versions
on the form 6. 0. 2. <X>. The version 6. 0. 2. 1 will include al changesin 6. 0. 2. However, 6. 0. 3 will most

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 57

3.5 Versions

likely not include al changesin 6. 0. 2. 1 (note that these versions have no order). A second branched version from
the base version 6. 0. 2 will beversion 6. 0. 2. 0. 1, and athird branched version will be 6. 0. 2. 0. 0. 1.

3.5.4 Releases and Patches

When a new OTP release is released it will have an OTP version on the form <Maj or >. 0 where the mgjor OTP
version number equalsthe release number. The major version number isincreased one step sincethelast major version.
All other OTP versions with the same major OTP version number are patches on that OTP release.

Patches are either released as maintenance patch packages or emergency patch packages. The only difference is
that maintenance patch packages are planned and usually contain more changes than emergency patch packages.
Emergency patch packages are released to solve one or more specific issues when such are discovered.

The release of a maintenance patch package usually imply an increase of the OTP <M nor > version while the
release of an emergency patch package usually imply an increase of the OTP <Pat ch> version. Thisis however not
necessarily always the case since changes of OTP versions are based on the actual changesin the code and not based
on whether the patch was planned or not. For more information see the Version Scheme section above.

3.5.5 OTP Versions Tree

All released OTP versions can be found in the OTP Versions Tree which is automatically updated whenever we
release anew OTP version. Note that every version number as such explicitly define its position in the version tree.
Nothing more than the version numbers are needed in order to construct the tree. The root of the tree is OTP version
17.0 which is when we introduced the new version scheme. The green versions are normal versions released on the
main track. Old OTP releaseswill be maintained for awhileon mai nt branchesthat have branched off from the main
track. Old mai nt branches always branch off from the main track when the next OTP release is introduced into the
main track. Versionson theseold mai nt branchesare marked blue. Besidesthe green and blue versions, therearealso
gray versions. These are versions on branches introduced in order to fix a specific problem for a specific customer on
aspecific base version. Brancheswith gray versions will typically become dead ends very quickly if not immediately.

3.5.6 OTP 17.0 Application Versions

The following list details the application versions that were part of OTP 17.0. If the normal part of an application
version number compares as smaller than the corresponding application versionin thelist, the version number does not
adhere to the version scheme introduced in OTP 17.0 and is to be considered as not having an order against versions
used as of OTP 17.0.

e asnl-3.0

e conmmon_test-1.8

e conpiler-5.0

» cosEvent-2.1.15

* cosEvent Donain-1.1. 14

+ cosFileTransfer-1.1.16

e cosNotification-1.1.21

e cosProperty-1.1.17

e cosTinme-1.1.14

 cosTransactions-1.2.14

e cCcrypto-3.3

 debugger-4.0

e dialyzer-2.7

e dianeter-1.6

*+ edoc-0.7.13

58 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

3.5 Versions

el dap-1.0.3

erl _docgen-0.3.5
erl _interface-3.7.16
erts-6.0

et-1.5
eunit-2.2.7
gs-1.5.16

hi pe-3.10.3
ic-4.3.5

i nets-5.10
jinterface-1.5.9
kernel -3.0
megaco-3.17.1
mesi a- 4. 12
observer-2.0
odbc-2. 10. 20

or ber-3. 6. 27
os_non-2. 2. 15
ose-1.0
otp_mbs-1.0.9
parsetool s-2.0. 11
percept-0.8.9
publ i c_key-0. 22
reltool-0.6.5
runtinme_tools-1.8.14
sasl-2.4
snnp-4.25.1
ssh-3.0.1
ssl-5.3.4
stdlib-2.0
syntax_tool s-1.6. 14
test _server-3.7
tool s-2.6. 14
typer-0.9.6
webt ool - 0. 8. 10
wx-1.2
xmerl-1.3.7

Ericsson AB. All Rights Reserved

.: Erlang/OTP System Documentation | 59

3.6 Support, Compatibility, Deprecations, and Removal

3.6 Support, Compatibility, Deprecations, and Removal

3.6.1 Introduction

This document describes strategy regarding supported Releases, compatibility, deprecations and removal of
functionality. This document was introduced in OTP 21. Actions taken regarding these issues before OTP 21 did not
adhere this document.

3.6.2 Supported Releases

In general, bugs are only fixed on the latest release, and new features are introduced in the upcoming release that is
under development. However, when we, due to internal reasons, fix bugs on older releases, these will be available
and announced as well.

Dueto the above, pull requests are only accepted on the mai nt andthemast er branchesin our git repository. The
mai nt branch contains changes planned for the next maintenance patch package on the latest OTP release and the
mast er branch contain changes planned for the upcoming OTP release.

3.6.3 Compatibility

We always strive to remain as compatible as possible even in the cases where we give no compatibility guarantees.

Different parts of the system will be handled differently regarding compatibility. The following items describe how
different parts of the system are handled.

Erlang Distribution
Erlang nodes can communicate across at least two preceding and two subsequent rel eases.
Compiled BEAM Code, NIF Libraries and Drivers
Compiled code can be loaded on at least two subsequent rel eases.
Loading on previous releases is not supported.
APIs
Compatible between releases.
Compiler Warnings
New warnings may be issued between releases.
Command Line Arguments
Incompatible changes may occur between releases.
OTP Build Procedures
Incompatible changes may occur between releases.

Under certain circumstances incompatible changes might be introduced even in parts of the system that should be
compatible between releases. Things that might trigger incompatible changes like this are;

Security Issues

It might be necessary to introduce incompatible changes in order to solve a security issue. This kind of
incompatibility might occur in a patch.

Bug Fixes

We will not be bug-compatible. A bug fix might introduce incompatible changes. This kind of incompatibility
might occur in a patch.

60 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

3.6 Support, Compatibility, Deprecations, and Removal

Severe Previous Design Issues

Some parts of OTP were designed a very long time ago and did not necessarily take today's computing
environmentsinto account. |n some cases the conseguences of those design decisions are too severe. Thismay be
performance wise, scalability wise, etc. If we deem the consequencestoo severe, we might introduceincompatible
changes. Thiskind of incompatibility will not be introduced in a patch, but instead in the next release.

Peripheral, trace, and debug functionality is at greater risk of being changed in an incompatible way than functionality
in the language itself and core libraries used during operation.

3.6.4 Deprecation

Functionality is deprecated when new functionality is introduced that is preferred to be used instead of the old
functionality that isbeing deprecated. The deprecation doesnaot imply removal of the functionality unless an upcoming
removal is explicitly stated in the deprecation.

Deprecated functionality will be documented as deprecated, and compiler warnings will be issued, when appropriate,
asearly as possible. That is, the new preferred functionality will appear at the same time as the deprecation isissued.
A new deprecation will at least be announced in arelease note and the documentation.

3.6.5 Removal

Legacy solutions may eventually need to be removed. In such cases, they will be phased out on along enough time
period to give users the time to adapt. Before removal of functionality it will be deprecated at least during one release
with an explicit announcement about the upcoming removal. A new deprecation will at least be announced in arelease
note and the documentation.

Peripheral, trace, and debug functionality is at greater risk of removal than functionality in thelanguage itself and core
libraries used during operation.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 61

4.1 Embedded Solaris

4 Embedded Systems User's Guide

This section describes the issues that are specific for running Erlang on an embedded system. It describes the
differencesin installing and starting Erlang compared to how it is done for a non-embedded system.

Thisis a supplementary section. Y ou also need to read Section 1 Installation Guide.

Thereis also target architecture-specific information in the top-level README file of the Erlang distribution.

4.1 Embedded Solaris

This section describes the operating system-specific parts of OTP that relate to Solaris.

4.1.1 Memory Use

Solaris takes about 17 MB of RAM on a system with 64 MB of total RAM. This leaves about 47 MB for the
applications. If the system uses swapping, these figures cannot be improved because unnecessary daemon processes
are swapped out. However, if swapping isdisabled, or if the swap spaceisof limited resourcein the system, it becomes
necessary to kill off unnecessary daemon processes.

4.1.2 Disk Space Use

The disk space required by Solaris can be minimized by using the Core User support installation. It requires about 80
MB of disk space. Thisinstalls only the minimum software required to boot and run Solaris. The disk space can be
further reduced by deleting unnecessary individual files. However, unless disk space is a critical resource the effort
required and the risks involved cannot be justified.

4.1.3 Installing an Embedded System

This section is about installing an embedded system. The following topics are considered:
* Creating user and installation directory

e Instaling an embedded system

» Configuring automatic start at boot

e Making a hardware watchdog available

* Changing permission for reboot

e Setting TERM environment variable

e Adding patches

* Installing module os_sup in application os_mon

Several of the procedures in this section require expert knowledge of the Solaris operating system. For most of them
super user privilege is needed.

Creating User and Installation Directory

It is recommended that the embedded environment is run by an ordinary user, that is, a user who does not have super
user privileges.

62 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

In this section, it is assumed that the username isot puser and that the home directory of that user is:

/export/home/otpuser

It is also assumed that in the home directory of ot puser , thereisadirectory named ot p, the full path of whichis:

/export/home/otpuser/otp
Thisdirectory istheinstallation directory of the embedded environment.

Installing an Embedded System

The procedure for installing an embedded system isthe same asfor an ordinary system (see I nstallation Guide), except
for the following:

» The (compressed) tape archivefile isto be extracted in the installation directory defined above.
e |tisnot needed to link the start script to a standard directory like/ usr /| ocal / bi n.
Configuring Automatic Start at Boot

A true embedded system must start when the system boots. This section accounts for the necessary configurations
needed to achieve that.

The embedded system and all the applications start automatically if the script file shown below is added to directory
/ et c/rc3. d. Thefilemust be owned and readable by r oot . Its name cannot be arbitrarily assigned; the following
name is recommended:

S750tp.system

For more details on initialization (and termination) scripts, and naming thereof, see the Solaris documentation.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 63

4.1 Embedded Solaris

#!/bin/sh
#
File name: S75o0tp.system
Purpose: Automatically starts Erlang and applications when the
system starts
Author: janne@erlang.ericsson.se
Resides in: /etc/rc3.d
#
if [' -d /usr/bin]
then # /usr not mounted
exit
fi
killproc() { # kill the named process(es)

pid="/usr/bin/ps -e |
/usr/bin/grep -w $1 |
/usr/bin/sed -e 's/~ *//' -e 's/ .*//"°
["$pid" !'= ""] && kill $pid
}

Start/stop processes required for Erlang

case "$1" in
'start')
Start the Erlang emulator
#
su - otpuser -c "/export/home/otpuser/otp/bin/start" &
'stop')
killproc beam
*) r
echo "Usage: $0 { start | stop }"

esac

File/ export/ hone/ ot puser/ ot p/ bi n/ st art referred to in the above script is precisely the st art script
described in Starting Erlang. The script variable OTP_ROOT in that st art script corresponds to the following
example path used in this section:

/export/home/otpuser/otp

Thest art scriptisto be edited accordingly.

Useof theki | | pr oc procedure in the above script can be combined withacall toer| _cal | , for example:

$SOME_PATH/erl call -n Node init stop

To take Erlang down gracefully, seetheer | _cal | (1) manual pageiner| _i nt er f ace for details on the use of
erl _cal I . However, that requires that Erlang runs as a distributed node, which is not always the case.

Theki | | pr oc procedureisnot to be removed. The purpose is here to move from run level 3 (multi-user mode with
networking resources) to run level 2 (multi-user mode without such resources), in which Erlang is not to run.

Making Hardware Watchdog Available

For Solarisrunning on VME boards from Force Computers, the onboard hardware watchdog can be activated, provided
aVME busdriver is added to the operating system (see a so Installation Problems).

64 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

Seedsotheheart (3) manual pagein Kernel.

Changing Permissions for Reboot

If the HEART _COVMAND environment variable isto be set inthe st ar t script in Starting Erlang, and if the value
isto be set to the path of the Solarisr eboot command, that is:

HEART COMMAND=/usr/sbin/reboot

then the ownership and file permissionsfor / usr/ sbi n/ r eboot must be changed as follows:

chown 0 /usr/sbin/reboot
chmod 4755 /usr/sbin/reboot

Seedsotheheart (3) manual pagein Kernel.

Setting TERM Environment Variable

When the Erlang runtime system is automatically started from the S750t p. syst emscript, the TERMenvironment
variable must be set. The following isaminimal setting:

TERM=sun
Thisisto be added to thest art script.

Adding Patches

For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version-specific patch with number
103640-02 must be added to the operating system. Other patches might be needed, see the release README file
<ERL_| NSTALL_DI R>/ README.

Installing Module os_sup in Application os_mon
The following four installation procedures require super user privilege:
Installation

« Makea copy of the Solaris standard configuration filefor sysl ogd:

» Make acopy of the Solaris standard configuration file for sysl ogd. Thisfileis usually named
sysl og. conf and foundin directory / et c.

« Thefilename of the copy must besysl og. conf . ORI G Thedirectory location is optional; usualy itis/
et c. A simple way to do thisisto issue the following command:

cp /etc/syslog.conf /etc/syslog.conf.ORIG

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 65

4.1 Embedded Solaris

* Makean Erlang-specific configuration filefor sysl ogd:
» Make an edited copy of the backup copy previously made.
» Thefilename must besysl og. conf . OTP. The path must be the same as the backup copy.

» Theformat of the configuration fileisfound inthesysl og. conf (5) manual page, by issuing the
command man sysl og. conf.

e Usudly alineis added that isto state:
» Which types of information that is to be supervised by Erlang
e Thename of thefile (actually a named pipe) that is to receive the information

» If, for example, only information originating from the UNIX kernel isto be supervised, the lineisto begin
with ker n. LEVEL. For the possible values of LEVEL, seesysl og. conf (5).

e After at least one tab-character, the line added is to contain the full name of the named pipe where
sysl ogd writesitsinformation. The path must be the same as for thefilessysl og. conf. ORI Gand
sysl og. conf . OTP. Thefilename must be sysl og. ot p.

« If thedirectory for thefilessysl og. conf . ORI Gand sysl og. conf. OTPis/ et c, thelinein
sysl og. conf . OTPisasfollows:

kern.LEVEL /etc/syslog.otp

e Check thefileprivileges of the configuration files:
* Theconfiguration filesisto haver w-r - - r - - file privileges and be owned by root.
* A simpleway to do thisis to issue these commands:
chmod 644 /etc/syslog.conf

chmod 644 /etc/syslog.conf.ORIG
chmod 644 /etc/syslog.conf.0OTP

* Noticethat if thefilessysl og. conf . ORI Gand sysl og. conf . OTP arenot in directory / et c, the
file path in the second and third command must be modified.
« Moadify file privileges and owner ship of thenod_sysl og utility:
» Thefile privileges and ownership of the mod_sysl og utility must be modified.

* Thefull name of the binary executable file is derived from the position of application os_non in the file
system by adding / pri v/ bi n/ nod_sysl og. The generic full name of the binary executable fileisthus:

<0TP_ROOT>/1lib/os_mon-<REV>/priv/bin/mod syslog

Example: If thepathto ot p- r oot is/ usr/ ot p, thenthepathtotheos non applicationis/ usr/ ot p/
i b/ os_non-1. 0 (assuming revision 1.0) and the full name of the binary executablefileis/ usr/ ot p/
i b/os_non-1.0/priv/bin/nod_sysl og.

» Thebinary executable file must be owned by root, haver wsr - xr - x file privileges, in particular the
set ui d bit of the user must be set.

A simpleway to do thisisto issue the following commands:

cd <OTP_ROOT>/1ib/0os_mon-<REV>/priv/bin/mod_syslog
chmod 4755 mod syslog
chown root mod syslog

Testing the Application Configuration File
The following procedure does not require root privilege:
» Ensurethat the configuration parameters for the os_sup module in the os_non application are correct.

66 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

» Browse the application configuration file (do not edit it). The full name of the application configuration file is
derived from the position of the os_non application in the file system by adding / ebi n/ os_non. app.

The generic full name of thefileisthus:
<0TP_ROOT>/1ib/0s_mon-<REV>/ebin/os_mon.app.

Example: If the path to ot p- r oot is/ usr/ ot p, then the path to the os_non application is/ usr/ ot p/
lib/os_non-1.0 (assuming revision 1.0) and the full name of the binary executable fileis/ usr/ ot p/
i b/ os_non-1. 0/ ebi n/ os_non. app.

« Ensurethat the following configuration parameters have correct values:

Par ameter Function Standard value

t r ue for thefirst instance on the
hardware; f al se for the other
instances

Specifiesif os_sup isto be started

start_os_sup of not

The directory for (1) back-up copy
0S_Ssup_own and (2) Erlang-specific configuration | "/ et c"
filefor sysl ogd

The full name for the Solaris

os_sup_sysl ogconf standard configuration file for "/etc/sysl og. conf"
sysl ogd
The tag for the messages that are

error_tag sent to the error logger inthe Erlang |std_error

runtime system

Table 1.1: Configuration Parameters

If the values listed in 0s_non. app do not suit your needs, do not edit that file. Instead override the values in a
system configuration file, the full pathname of which is given on the command linetoer | .

Example: Contents of an application configuration file:

[{os _mon, [{start os sup, true}, {os sup own, "/etc"},
{os_sup_syslogconf, "/etc/syslog.conf"}, {os sup errortag, std error}]}].

Related Documents

Seetheos_non(3) application, theappl i cati on(3) manual pagein Kernel, andtheer| (1) manual pagein
ERTS.

Installation Problems

The hardware watchdog timer, which is controlled by the hear t port program, requires package FORCEv e, which
contains the VME bus driver, to be installed. However, this driver can clash with the Sun ncp driver and cause the
system to refuse to boot. To cure this problem, the following lines areto be added to / et ¢/ syst em

e« exclude: drv/ntp

e exclude: drv/ntpzsa

e exclude: drv/ntpp

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 67

4.1 Embedded Solaris

It is recommended to add these lines to avoid a clash. The clash can make it impossible to boot the system.

4.1.4 Starting Erlang

This section describes how an embedded system is started. Four programs are involved and they normally residein the
directory <ERL_| NSTALL_DI R>/ bi n. Theonly exceptionisthest ar t program, which can be located anywhere,
and is also the only program that must be modified by the user.

In an embedded system, thereis usually no interactive shell. However, an operator can attach to the Erlang system by
commandt o_er | . The operator is then connected to the Erlang shell and can give ordinary Erlang commands. All
interaction with the system through this shell islogged in a special directory.

Basically, the procedure is as follows:
* Thestart programiscalled when the machineis started.

e ltcalsrun_erl ,which setsup things so the operator can attach to the system.

* ltcdlsstart_erl ,whichcalsthe correct version of er | exec (whichislocated in
<ERL_| NSTALL_DI R>/ ert s- EVsn/ bi n) with the correct boot and conf i g files.

4.1.5 Programs

start

Thisprogram is called when the machineis started. It can be modified or rewritten to suit aspecia system. By defaullt,
it must be called st art and residein <ERL_| NSTALL_DI R>/ bi n. Another start program can be used, by using
configuration parameter st art _pr g in application SASL.

The start program must call r un_er | as shown below. It must also take an optional parameter, which defaults to
<ERL_I NSTALL_DI R>/rel eases/ start _erl . dat a.

This program is to set static parameters and environment variables such as - sname Name and HEART_COMVAND
to reboot the machine.

The<RELDI R> directory iswhere new rel ease packets are installed, and where the rel ease handler keepsinformation
about releases. For more information, seether el ease_handl er (3) manual pagein SASL.

The following script illustrates the default behaviour of the program:

#!/bin/sh

Usage: start [DataFile]
#

ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]
then
RELDIR=$RO0OTDIR/releases
fi
START ERL DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl \
$ROOTDIR $RELDIR $START ERL DATA" > /dev/null 2>&1 &

The following script illustrates a modification where the node is given the name cp1, and where the environment
variables HEART_COMVAND and TERMhave been added to the previous script:

68 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

#1/bin/sh

Usage: start [DataFilel

#
HEART_COMMAND=/usr/sbin/reboot
TERM=sun

export HEART COMMAND TERM
ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]

then
RELDIR=$RO0OTDIR/releases

fi

START ERL DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl \
$ROOTDIR $RELDIR $START ERL DATA -heart -sname cpl" > /dev/null 2>&1 &

If adiskless and/or read-only client node is about to start, filest art _er| . dat a islocated in the client directory
at the master node. Thus, the START _ERL_DATAlineisto look like:

CLIENTDIR=$ROOTDIR/clients/clientname
START ERL DATA=${1:-$CLIENTDIR/bin/start erl.data}

run_erl

This program is used to start the emulator, but you will not be connected to the shell. t o_er | is used to connect
to the Erlang shell.

Usage: run_erl pipe dir/ log dir "exec command [parameters ...]"

Here:

e pipe_dir/ istobe/tnp/ (to_erl usesthisname by default).

* | og_dir iswherethelog files are written.

e command [par anet er s] isexecuted.

e Everything writtento st di n and st dout isloggedinl og_di r.

Log filesarewrittenin | og_di r . Each log file has a name of the form er | ang. | 0g. N, where N is a generation

number, ranging from 1 to 5. Each log file holds up to 100 kB text. Astime goes by, the following log files are found
in the log file directory:

erlang.log.1

erlang.log.1l, erlang.log.?2

erlang.log.1l, erlang.log.2, erlang.log.3

erlang.log.1l, erlang.log.2, erlang.log.3, erlang.log.4
erlang.log.2, erlang.log.3, erlang.log.4, erlang.log.5
erlang.log.3, erlang.log.4, erlang.log.5, erlang.log.1l

The most recent log file is the rightmost in each row. That is, the most recent file is the one with the highest number,
or if there are already four files, the one before the skip.

When alog fileis opened (for appending or created), atime stamp iswritten to thefile. If nothing has been written to
thelog files for 15 minutes, arecord isinserted that says that we are still alive.

to_erl

This program is used to attach to arunning Erlang runtime system, started withr un_er | .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 69

4.2 Windows NT

Usage: to erl [pipe name | pipe dir]
Herepi pe_nane defaultsto/ t np/ er | ang. pi pe. N.
To disconnect from the shell without exiting the Erlang system, typeCt r | - D.

start_erl

This program starts the Erlang emulator with parameters - boot and - conf i g set. It reads data about where these
filesarelocated fromafilenamedst art _er| . dat a, whichislocated in <RELDI R>. Each new release introduces
anew datafile. Thisfile is automatically generated by the release handler in Erlang.

The following script illustrates the behaviour of the program:
#!/bin/sh
This program is called by run erl. It starts

the Erlang emulator and sets -boot and -config parameters.

#
#
#
It should only be used at an embedded target system.
#
#

Usage: start erl RootDir RelDir DataFile [ErlFlags ...]

H*

ROOTDIR=%$1
shift
RELDIR=$1
shift
DataFile=$1
shift

ERTS VSN="awk '{print $1}' ¢$DataFile’
VSN="awk '{print $2}' $DataFile’

BINDIR=$RO0OTDIR/erts-$ERTS VSN/bin
EMU=beam

PROGNAME="echo $0 | sed 's/.*\///'"
export EMU

export ROOTDIR

export BINDIR

export PROGNAME

export RELDIR

exec $BINDIR/erlexec -boot $RELDIR/$VSN/start -config $RELDIR/$VSN/sys $*

If adiskless and/or read-only client node with the SASL configuration parameter st ati c_enul at or settotrue
is about to start, the - boot and - conf i g flags must be changed.

Assuch aclient cannot read anew st art _er | . dat a file (the file cannot be changed dynamically). The boot and
config files are always fetched from the same place (but with new contents if a new release has been installed).

Ther el ease_handl er copiesthesefilestothebi n directory inthe client directory at the master nodes whenever
anew release is made permanent.

Assuming the same CLI ENTDI R as above, the last lineisto look like:

exec $BINDIR/erlexec -boot $CLIENTDIR/bin/start \
-config $CLIENTDIR/bin/sys $*

4.2 Windows NT

This section describes the operating system-specific parts of OTP that relate to Windows NT.

70 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Windows NT

A normal installation of Windows NT 4.0, with Service Pack 4 or later, is required for an embedded Windows NT
running OTP.

4.2.1 Memory Use

RAM memory of 96 MB is recommended to run OTP on Windows NT. A system with less than 64 MB of RAM is
not recommended.

4.2.2 Disk Space Use

A minimum Windows NT installation with networking needs 250 MB, and an extra 130 MB for the swap file.

4.2.3 Installing an Embedded System

Normal Windows NT installation is performed. No additional application programs are needed, such as Internet
Explorer or web server. Networking with TCP/IP is required.

Service Pack 4 or later must be installed.
Hardware Watchdog

For Windows NT running on standard PCs with ISA and/or PCI bus, an extension card with a hardware watchdog
can beinstalled.

For moreinformation, seethe hear t (3) manual pagein Kernel.

4.2.4 Starting Erlang

On an embedded system, theer | srv moduleisto be used to install the Erlang process as a Windows system service.
This service can start after Windows NT has booted.

For more information, seetheer | sr v manual pagein ERTS.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 71

5.1 Introduction

5 Getting Started With Erlang

5.1 Introduction

This section is a quick start tutorial to get you started with Erlang. Everything in this section is true, but only part
of the truth. For example, only the simplest form of the syntax is shown, not all esoteric forms. Also, parts that are
greatly simplified are indicated with * manual*. This means that a lot more information on the subject is to be found
in the Erlang book or in Erlang Reference Manual.

5.1.1 Prerequisites
The reader of this section is assumed to be familiar with the following:

e Computersin general
e Basicson how computers are programmed

5.1.2 Omitted Topics

The following topics are not treated in this section:

* References.

» Local error handling (catch/throw).

e Singledirection links (monitor).

* Handling of binary data (binaries/ bit syntax).
e List comprehensions.

e How to communicate with the outside world and software written in other languages (ports); thisis described in
Interoperability Tutorial.

* Erlang libraries (for example, file handling).

e OTPand (in consequence) the Mnesia database.
* Hashtablesfor Erlang terms (ETS).

e Changing code in running systems.

5.2 Sequential Programming
5.2.1 The Erlang Shell

Most operating systems have acommand interpreter or shell, UNIX and Linux have many, Windows hasthe command
prompt. Erlang hasits own shell wherebits of Erlang code can bewritten directly, and be eval uated to see what happens
(see the shell(3) manual pagein STDLIB).

Start the Erlang shell (in Linux or UNIX) by starting a shell or command interpreter in your operating system and
typing er | . You will see something like this.

% erl
Erlang R15B (erts-5.9.1) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.1 (abort with "G)
1>

72 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

Type "2 + 5." in the shell and then press Enter (carriage return). Notice that you tell the shell you are done entering

code by finishing with afull stop "." and a carriage return.

1> 2 + 5.
7
2>

As shown, the Erlang shell numbers the lines that can be entered, (as 1> 2>) and that it correctly saysthat 2 + 5is 7.
If you make writing mistakes in the shell, you can delete with the backspace key, as in most shells. There are many
more editing commands in the shell (seetty - A command line interface in ERTS User's Guide).

(Notice that many line numbers given by the shell in the following examples are out of sequence. Thisis because this
tutorial was written and code-tested in separate sessions).

Hereis a bit more complex calculation:

2> (42 + 77) * 66 / 3.
2618.0

Notice the use of brackets, the multiplication operator "*", and the division operator "/", asin normal arithmetic (see
Expressions).

Press Control-C to shut down the Erlang system and the Erlang shell.

The following output is shown:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (1)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

o° @

Type"a" to leave the Erlang system.
Another way to shut down the Erlang system is by entering hal t () :

3> halt().

)
)

5.2.2 Modules and Functions

A programming language is not much use if you only can run code from the shell. So hereisasmall Erlang program.
Enteritinto afilenamedt ut . er| using a suitable text editor. The filenamet ut . er | isimportant, and a so that
it is in the same directory as the one where you started er |). If you are lucky your editor has an Erlang mode that
makes it easier for you to enter and format your code nicely (see The Erlang mode for Emacsin Tools User's Guide),
but you can manage perfectly well without. Here is the code to enter:

-module(tut).
-export([double/1]).

double(X

(->
2 x

)
X.
It is not hard to guess that this program doubles the value of numbers. The first two lines of the code are described
later. Let us compile the program. This can be done in an Erlang shell as follows, where ¢ means compile:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 73

5.2 Sequential Programming

3> c(tut).
{ok, tut}

The { ok, t ut } means that the compilation is OK. If it says "error" it means that there is some mistake in the text
that you entered. Additional error messages gives an idea to what is wrong so you can modify the text and then try
to compile the program again.

Now run the program:

4> tut:double(10).
20

As expected, double of 10is 20.
Now let us get back to thefirst two lines of the code. Erlang programs are written in files. Each file contains an Erlang
module. Thefirst line of code in the module is the module name (see Modules):

-module(tut).

Thus, the module is called tut. Notice the full stop "." at the end of the line. The files which are used to store the
module must have the same name as the module but with the extension ".erl”. In this case the filenameist ut . er| .
When using a function in another module, the syntax nodul e_nane: f uncti on_nane(ar gurment s) is used.
So the following means call function doubl e in modulet ut with argument "10".

4> tut:double(10).

The second line says that the module t ut contains a function called doubl e, which takes one argument (X in our
example):

-export([double/1]).

The second line also says that this function can be called from outside the modulet ut . More about this later. Again,
noticethe"." at the end of theline.

Now for a more complicated example, the factorial of a number. For example, the factorial of 4is4* 3* 2* 1,
which eguals 24.

Enter the following codein afilenamedt ut 1. er| :

-module(tutl).
-export([fac/1]1).

fac(l) ->
1;
fac(N) ->
N * fac(N - 1).
So thisisamodule, called t ut 1 that contains afunction called f ac>, which takes one argument, N.
Thefirst part says that the factorial of 1is1.:

fac(l) ->
1;

Notice that this part ends with asemicolon ;" that indicates that there is more of the function f ac> to come.
The second part says that the factorial of N isN multiplied by the factorial of N - 1:

74 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

fac(N) ->
N * fac(N - 1).

Notice that this part ends with a"." saying that there are no more parts of this function.

Compilethefile:
5> c(tutl).
{ok, tutl}
And now calculate the factorial of 4.
6> tutl:fac(4).
24
Here the function f ac> in modulet ut 1 is called with argument 4.

A function can have many arguments. Let us expand the modulet ut 1 with the function to multiply two numbers:

-module(tutl).
-export([fac/1, mult/2]).

fac(l) ->
1;
fac(N) ->

N * fac(N - 1).
mult(X, Y) ->
X *Y.
Notice that it is aso required to expand the - expor t line with the information that there is another function nul t
with two arguments.

Compile:
7> c(tutl).
{ok, tutl}
Try out the new function mul t :
8> tutl:mult(3,4).
12

In this example the numbers areintegers and the argumentsin the functionsin the code N, X, and Y are called variables.
Variables must start with a capital letter (see Variables). Examples of variables are Nunber , ShoeSi ze, and Age.

5.2.3 Atoms

Atom is another data type in Erlang. Atoms start with a small letter (see Atom), for example, charl es,
centi met er,andi nch. Atomsare simply names, nothing else. They are not like variables, which can have avalue.

Enter the next program in afilenamed t ut 2. er |). It can be useful for converting from inches to centimeters and
conversely:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 75

5.2 Sequential Programming

-module(tut2).
-export([convert/2]).

convert(M, inch) ->
M/ 2.54;

convert(N, centimeter) ->
N * 2.54,

Compile:

9> c(tut2).
{ok, tut2}

Test:

10> tut2:convert(3, inch).
1.1811023622047243

11> tut2:convert(7, centimeter).
17.78

Notice the introduction of decimals (floating point numbers) without any explanation. Hopefully you can cope with
that.

Let us see what happensif something other than cent i met er ori nch isenteredintheconvert function:

12> tut2:convert(3, miles).
** exception error: no function clause matching tut2:convert(3,miles) (tut2.erl, line 4)

The two parts of theconver t function are called its clauses. As shown, mi | es isnot part of either of the clauses.
The Erlang system cannot match either of the clauses so an error message f unct i on_cl ause isreturned. The
shell formats the error message nicely, but the error tuple is saved in the shell's history list and can be output by the
shell command v/ 1:

13> v(12).
{'EXIT',{function clause, [{tut2,convert,
[3,miles],
[{file, "tut2.erl"},{line,4}1},
{erl _eval,do apply,6,
[{file,"erl eval.erl"},{line,677}1},
{shell,exprs,7,[{file,"shell.erl"},{line,687}1},
{shell,eval exprs,7,[{file,"shell.erl"},{line,642}1},
{shell,eval loop,3,
[{file,"shell.erl"},{line,627}1}1}}
5.2.4 Tuples

Now thet ut 2 program is hardly good programming style. Consider:
tut2:convert(3, inch).

Does this mean that 3 isin inches? Or does it mean that 3 isin centimeters and is to be converted to inches? Erlang
has a way to group things together to make things more understandable. These are called tuples and are surrounded
by curly brackets, "{" and "}".

So, {i nch, 3} denotes 3 inchesand { centi et er, 5} denotes 5 centimeters. Now let us write a new program
that converts centimeters to inches and conversely. Enter the following codein afilecaledt ut 3. er |):

76 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

-module(tut3).
-export([convert length/1]).

convert length({centimeter, X}) ->
{inch, X / 2.54};

convert length({inch, Y}) ->
{centimeter, Y * 2.54}.

Compile and test:

14> c(tut3).

{ok, tut3}

15> tut3:convert length({inch, 5}).

{centimeter,12.7}

16> tut3:convert length(tut3:convert length({inch, 5})).
{inch,5.0}

Notice on line 16 that 5 inches is converted to centimeters and back again and reassuringly get back to the
origina value. That is, the argument to a function can be the result of another function. Consider how line 16
(above) works. The argument given to the function {i nch, 5} is first matched against the first head clause of
convert | ength,thatis convert | ength({centimeter, X}). It canbeseenthat {centineter, X}
does not match {i nch, 5} (the head is the bit before the "->"). This having failed, let us try the head of the next
clausethat is, convert _| engt h({i nch, Y}). Thismatches, and Y getsthe value 5.

Tuples can have more than two parts, in fact as many parts as you want, and contain any valid Erlang term. For
example, to represent the temperature of various cities of the world:

{moscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of items in them. Each item in atuple is called an element. In the tuple { nroscow,
{c,-10}},element 1lisnoscowand element 2is{ c, - 10} . Here c represents Celsiusand f Fahrenheit.

5.2.5 Lists

Whereas tuples group things together, it is a'so needed to represent lists of things. Listsin Erlang are surrounded by
square brackets, "[" and "]". For example, alist of the temperatures of various cities in the world can be;

[{moscow, {c, -10}}, {cape town, {f, 70}}, {stockholm, {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}1]

Notice that this list was so long that it did not fit on one line. This does not matter, Erlang allows line breaks at all
"sensible places" but not, for example, in the middle of atoms, integers, and others.

A useful way of looking at parts of lists, isby using "[". Thisis best explained by an example using the shell:

17> [First |TheRest] = [1,2,3,4,5].
[1,2,3,4,5]

18> First.

1

19> TheRest.

[2,3,4,5]

To separate the first elements of the list from the rest of the list, | isused. Fi r st has got value 1 and TheRest
has got the value [2,3,4,5].

Another example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 77

5.2 Sequential Programming

20> [E1, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]

21> E1.

1

22> E2.

2

23> R.

[3,4,5,6,7]

Here you seethe use of | to get the first two elements from the list. If you try to get more elements from the list than
there are elementsin the list, an error is returned. Notice also the special case of the list with no elements, []:

24> [A, B | C] = [1, 2].
[1,2]

25> A.

1

26> B.

2

27> C.

[1

In the previous examples, new variable names are used, instead of reusing the old ones: Fi r st , TheRest , E1, E2,
R, A, B, and C. Thereason for thisisthat a variable can only be given avalue oncein its context (scope). More about
thislater.

The following example shows how to find the length of alist. Enter the following codein afilenamedt ut 4. er|):
-module(tut4).
-export([list length/1]).
list length([]) ->
1ist?{ength([First | Rest]) ->
1 + list length(Rest).

Compile and test:

28> c(tut4).

{ok, tutd}

29> tut4:1list length([1,2,3,4,5,6,7]).
7

Explanation:

list length([]) ->
0;

The length of an empty list is obviously O.

list length([First | Rest]) ->
1 + list length(Rest).

Thelength of alist with thefirst element Fi r st and the remaining elements Rest is 1 + thelength of Rest .
(Advanced readers only: Thisis not tail recursive, there is a better way to write this function.)

In general, tuples are used where "records’ or "structs' are used in other languages. Also, lists are used when
representing things with varying sizes, that is, where linked lists are used in other languages.

78 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

Erlang does not have a string data type. Instead, strings can be represented by lists of Unicode characters. Thisimplies
for example that thelist [97, 98, 99] isequivalent to "abc". The Erlang shell is"clever" and guesses what list you
mean and outputsit in what it thinks is the most appropriate form, for example:

30> [97,98,99].
"abc"
5.2.6 Maps

Maps are a set of key to value associations. These associations are encapsulated with "#{" and "}". To create an
association from "key" to value 42:

> #{ "key" => 42 }.
#{ n keyll => 42}

Let usjump straight into the deep end with an example using some interesting features.

Thefollowing example shows how to cal culate al pha blending using mapsto reference color and a phachannels. Enter
thecodeinafilenamed col or. erl):

-module(color).
-export([new/4, blend/2]).
-define(is channel(V), (is float(V) andalso V >= 0.0 andalso V =< 1.0)).
new(R,G,B,A) when ?is channel(R), ?is channel(G),
?is channel(B), ?is channel(A) ->

#{red => R, green => G, blue => B, alpha => A}.

blend(Src,Dst) ->
blend(Src,Dst,alpha(Src,Dst)).

blend(Src,Dst,Alpha) when Alpha > 0.0 ->

Dst#{
red = red(Src,Dst) / Alpha,
green := green(Src,Dst) / Alpha,
blue = blue(Src,Dst) / Alpha,
alpha := Alpha

+i

blend(,Dst,) ->

Dst#{
red = 0.0,
green := 0.0,
blue := 0.0,
alpha := 0.0

}.

alpha(#{alpha := SA}, #{alpha := DA}) ->
SA + DA*(1.0 - SA).

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

Compile and test:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 79

5.2 Sequential Programming

> c(color).

{ok,color}

> Cl = color:new(0.3,0.4,0.5,1.0).

#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
> C2 = color:new(1.0,0.8,0.1,0.3).

#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}

> color:blend(C1,C2).

#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}

> color:blend(C2,C1).

#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

This example warrants some explanation:
-define(is channel(V), (is float(V) andalso V >= 0.0 andalso V =< 1.0)).

Firstamacroi s_channel isdefined to help with the guard tests. Thisis only here for convenience and to reduce
syntax cluttering. For more information about macros, see The Preprocessor.

new(R,G,B,A) when ?is channel(R), ?is channel(G),
?is channel(B), ?is channel(A) ->
#{red => R, green => G, blue => B, alpha => A}.

The function new 4 creates a new map term and lets the keysr ed, gr een, bl ue, and al pha be associated with
an initial value. In this case, only float values between and including 0.0 and 1.0 are allowed, as ensured by the ?
i s_channel / 1 macro for each argument. Only the => operator is allowed when creating a new map.

By calling bl end/ 2 on any color term created by new/ 4, the resulting color can be calculated as determined by
the two map terms.

Thefirst thing bl end/ 2 doesisto calculate the resulting alpha channel:

alpha(#{alpha := SA}, #{alpha := DA}) ->
SA + DA*(1.0 - SA).

The value associated with key al pha isfetched for both arguments using the : = operator. The other keysin the map
areignored, only the key al pha isrequired and checked for.

Thisisalso the case for functionsr ed/ 2, bl ue/ 2, and gr een/ 2.

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

The difference hereis that a check is made for two keysin each map argument. The other keys are ignored.

Finally, let us return the resulting color in bl end/ 3:

blend(Src,Dst,Alpha) when Alpha > 0.0 ->

Dst#{
red = red(Src,Dst) / Alpha,
green := green(Src,Dst) / Alpha,
blue := blue(Src,Dst) / Alpha,
alpha := Alpha

I3

The Dst map is updated with new channel values. The syntax for updating an existing key with a new value is with
the: = operator.

5.2.7 Standard Modules and Manual Pages

Erlang has many standard modules to help you do things. For example, the module i o contains many functions that
help in doing formatted input/output. To look up information about standard modules, the command er | - man can

80 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

be used at the operating shell or command prompt (the same place as you started er |). Try the operating system
shell command:

% erl -man io
ERLANG MODULE DEFINITION i0(3)

MODULE
io - Standard I/0 Server Interface Functions

DESCRIPTION
This module provides an interface to standard Erlang IO
servers. The output functions all return ok if they are suc-

If this does not work on your system, the documentation isincluded asHTML in the Erlang/OTP release. Y ou can also
read the documentation asHTML or download it as PDF from either of the sites www.erlang.se (commercia Erlang)
or www.erlang.org (open source). For example, for Erlang/OTP release R9B:

http://www.erlang.org/doc/r9b/doc/index.html

5.2.8 Writing Output to a Terminal

Itisniceto beableto do formatted output in exampl es, so the next example showsasimpleway tousethei o: f or mat
function. Like all other exported functions, you can test thei o: f or mat function in the shell:

31> io:format("hello world~n", [1).

hello world

ok

32> io:format("this outputs one Erlang term: ~w~n", [hello]).

this outputs one Erlang term: hello

ok

33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
this outputs two Erlang terms: helloworld

ok

34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
this outputs two Erlang terms: hello world

ok

The function f or mat / 2 (that is, f or mat with two arguments) takes two lists. The first oneis nearly aways alist
written between " ". Thislist is printed out as it is, except that each ~w is replaced by a term taken in order from the
second list. Each ~nisreplaced by anew line. Thei o: f or mat / 2 function itself returns the atom ok if everything
goes as planned. Like other functions in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it isa
deliberate policy. Erlang has sophisticated mechanisms to handle errors which are shown later. As an exercise, try to
makei o: f or mat crash, it should not be difficult. But notice that although i o: f or mat crashes, the Erlang shell
itself does not crash.

5.2.9 A Larger Example

Now for a larger example to consolidate what you have learnt so far. Assume that you have a list of temperature
readings from a number of citiesin the world. Some of them arein Celsius and some in Fahrenheit (asin the previous
list). First let us convert them all to Celsius, then let us print the data neatly.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 81

5.2 Sequential Programming

%% This module is in file tut5.erl

-module(tut5).
-export([format temps/1]).

%% Only this function is exported

format temps([])-> % No output for an empty list
ok;

format temps([City | Rest]) ->
print temp(convert to celsius(City)),
format temps(Rest).

convert to celsius({Name, {c, Temp}}) -> % No conversion needed
{Name, {c, Temp}};

convert to celsius({Name, {f, Temp}}) -> % Do the conversion
{Name, {c, (Temp - 32) * 5 / 9}}.

print _temp({Name, {c, Temp}}) ->
io:format("~-15w ~w c~n", [Name, Temp]).

35> c(tut5).

{ok, tut5}

36> tut5:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

moscow -10 ¢

cape_town 21.11111111111111 ¢
stockholm -4 c

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢
ok

Before looking at how this program works, notice that afew comments are added to the code. A comment starts with
a %-character and goes on to the end of the line. Notice also that the- export ([f or mat _t enps/ 1]). lineonly
includes the function f or mat _t enps/ 1. The other functions are local functions, that is, they are not visible from
outside the module t ut 5.

Notice also that when testing the program from the shell, the input is spread over two lines as the line was too long.

When f or mat _t enps iscaledthefirsttime, Ci ty getsthevaue{noscow, { ¢, - 10} } and Rest istherest of
thelist. Sothefunction pri nt _tenp(convert to_cel si us({noscow, {c,-10}})) iscaled.

Here is a function call as convert to_cel si us({noscow, {c, -10}}) as the argument to the function
print _t enp. When function calls are nested like this, they execute (evaluate) from the inside out. That is, first
convert _to_cel sius({noscow,{c,-10}}) is evauated, which gives the value { roscow, {c, - 10} }
as the temperature is aready in Celsius. Then pri nt _t enp({noscow, {c, - 10} }) isevauated. The function
convert to_cel sius worksinasimilar way totheconvert | engt h function in the previous example.

print_tenpsmply calsi o: f or mat inasimilar way to what has been described above. Notice that ~-15w says
to print the "term" with afield length (width) of 15 and left justify it. (see the io(3)) manual page in STDLIB.

Now f ormat _t enps(Rest) is caled with the rest of the list as an argument. This way of doing things is
similar to the loop constructs in other languages. (Y es, thisis recursion, but do not let that worry you.) So the same
format _t enps function is called again, thistime Ci t y gets the value { cape_t own, {f, 70} } and the same
procedure is repeated as before. This is done until the list becomes empty, that is [], which causes the first clause
format _tenps([]) tomatch. Thissimply returns (resultsin) the atom ok, so the program ends.

5.2.10 Matching, Guards, and Scope of Variables

It can be useful to find the maximum and minimum temperature in lists like this. Before extending the program to do
this, let uslook at functions for finding the maximum value of the elementsin alist:

82 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

-module(tut6).
-export([list max/1]).

list max([Head|Rest]) ->
list max(Rest, Head).

list max([], Res) ->
Res;

list max([Head|Rest], Result so far) when Head > Result so far ->
list max(Rest, Head);

list max([Head|Rest], Result so far) ->
list max(Rest, Result so far).

37> c(tutb).

{ok, tut6}

38> tut6:list max([1,2,3,4,5,7,4,3,2,11).
7

First notice that two functions have the same name, | i st _nax. However, each of these takes a different number of
arguments (parameters). In Erlang these are regarded as compl etely different functions. Where you need to distinguish
between these functions, you write Name/Arity, where Name is the function name and Arity is the number of
arguments, inthiscasel i st _nmax/ 1 andli st_max/ 2.

In this example you walk through a list "carrying" avalue, in thiscase Result _so_far.list_max/ 1 simply
assumes that the max value of the list isthe head of the list and calls| i st _nax/ 2 with the rest of the list and the
value of the head of the list. In the above thiswould bel i st _max([2, 3,4,5,7, 4, 3,2,1],1).If you tried
tousel i st _nmax/ 1 with an empty list or tried to use it with something that is not alist at all, you would cause an
error. Notice that the Erlang philosophy is not to handle errors of this type in the function they occur, but to do so
elsewhere. More about this later.

In l'ist_max/2, you wak down the list and use Head instead of Result _so far when Head >
Resul t _so_far.when isaspecia word used before the -> in the function to say that you only use this part of
the function if the test that follows is true. A test of thistypeis caled guard. If the guard is false (that is, the guard
fails), the next part of the function istried. In this case, if Head is not greater than Resul t _so_f ar, then it must
be smaller or equal to it. This meansthat a guard on the next part of the function is not needed.

Some useful operatorsin guards are:

* <lessthan

e > greater than

e ==equd

e >=greater or equal
e =<lessorequa

e /=not equa

(see Guard Sequences).

To change the above program to one that works out the minimum value of the element in alist, you only need to write
<instead of >. (But it would be wise to change the name of the functiontol i st _ni n.)

Earlier it was mentioned that a variable can only be given a value once in its scope. In the above you see that
Resul t _so_far isgiven severa values. Thisis OK since every timeyou call | i st _max/ 2 you create a new
scope and one can regard Resul t _so_f ar asadifferent variable in each scope.

Another way of creating and giving a variable a value is by using the match operator = . So if you writeM = 5, a
variable called Mis created with the value 5. If, in the same scope, you then write M = 6, an error isreturned. Try
thisout in the shell:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 83

5.2 Sequential Programming

39> M = 5.
5
40> M = 6.

** exception error: no match of right hand side value 6
41> M =M + 1.

** exception error: no match of right hand side value 6
42> N =M + 1.

6

The use of the match operator is particularly useful for pulling apart Erlang terms and creating new ones.

43> {X, Y} = {paris, {f, 28}}.
{paris, {f,28}}

44> X,

paris

45> Y,

{f,28}

Here X getsthevaluepari s and Y{f, 28}.

If you try to do the same again with another city, an error is returned:

46> {X, Y} = {london, {f, 36}}.
** exception error: no match of right hand side value {london,{f,36}}

Variables can also be used to improve the readability of programs. For example, in function | i st _nax/ 2 above,
you can write:

list_max([Head|Rest], Result_so_far) when Head > Result_so far ->
New_result far = Head,
list_max(Rest, New_result far);

Thisispossibly alittle clearer.

5.2.11 More About Lists

Remember that the | operator can be used to get the head of alist:

47> [M1|T1] = [paris, london, rome].
[paris,london, rome]

48> M1.

paris

49> T1.

[london, rome]

The | operator can also be used to add ahead to alist:
50> L1 = [madrid | T1].
[madrid, london, rome]
51> L1.

[madrid, London, rome]

Now an example of thiswhen working with lists - reversing the order of alist:

84 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

-module(tut8).
-export([reverse/1]).

reverse(List) ->
reverse(List, []).

reverse([Head | Rest], Reversed List) ->
reverse(Rest, [Head | Reversed List]);
reverse([], Reversed List) ->
Reversed List.

52> c(tut8).

{ok, tut8}

53> tut8:reverse([1,2,3]).
[3,2,1]

Consider how Rever sed_Li st is built. It starts as [], then successively the heads are taken off of the list to be
reversed and added to the the Rever sed_Li st , asshown in the following:

reverse([1]2,3], []) =>
reverse([2,3], [1]|[]11])

reverse([2|3], [1]) =>
reverse([3]1, [2]|[1])

reverse([3|[11, [2,1]) =>
reverse([], [3]|[2,1]1])

reverse([], [3,2,1]) =>
[3,2,1]

Themodulel i st s contains many functionsfor manipulating lists, for example, for reversing them. So before writing
a list-manipulating function it is a good idea to check if one not aready is written for you (see the lists(3) manual
pagein STDLIB).

Now let us get back to the cities and temperatures, but take a more structured approach thistime. First let us convert
thewholelist to Celsius as follows:

-module(tut?).
-export([format temps/1]).

format_temps(List of_cities) ->
convert_list to _c(List of cities).

convert list to c([{Name, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

Test the function:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 85

5.2 Sequential Programming

54> c(tut7).
{ok, tut7}.
55> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow, {c,-10}},

{cape town,{c,21.11111111111111}},

{stockholm, {c,-4}},

{paris, {c,-2.2222222222222223}},

{london, {c,2.2222222222222223}}]

Explanation:

format temps(List of cities) ->
convert list to c(List of cities).

Heref ormat _tenps/ 1 callsconvert list_to_c/1.convert _|ist_to_c/1 takes off the head of the
Li st _of _cities, converts it to Celsius if needed. The | operator is used to add the (maybe) converted to the
converted rest of thelist:

[Converted City | convert list to c(Rest)];
or:
[City | convert list to c(Rest)];
Thisisdone until the end of thelist isreached, that is, the list is empty:

convert list to c([]) ->
[1.

Now when the list is converted, afunction to print it is added:

-module(tut?).
-export([format temps/1]).

format temps(List of cities) ->
Converted List = convert list to c(List of cities),
print temp(Converted List).

convert list to c([{Name, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

print temp([{Name, {c, Temp}} | Restl]) ->
io:format("~-15w ~w c~n", [Name, Templ),
print temp(Rest);

print temp([]) ->
ok.

86 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

56> c(tut7).

{ok, tut7}

57> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

moscow -10 ¢

cape_town 21.11111111111111 ¢
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢
ok

Now afunction hasto be added to find the cities with the maxi mum and minimum temperatures. Thefollowing program
is not the most efficient way of doing this as you walk through thelist of citiesfour times. But it is better to first strive
for clarity and correctness and to make programs efficient only if needed.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 87

5.2 Sequential Programming

-module(tut?7).
-export([format temps/1]).

format temps(List of cities) ->
Converted List = convert list to c(List of cities),
print temp(Converted List),
{Max_city, Min city} = find max and min(Converted List),
print max _and min(Max city, Min city).

convert list to c([{Name, {f, Temp}} | Rest]) ->
Converted City = {Name, {c, (Temp -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

print temp([{Name, {c, Temp}} | Rest]) ->
io:format("~-15w ~w c~n", [Name, Temp]),
print temp(Rest);

print _temp([]) ->
ok.

find max_and min([City | Rest]) ->
find max_and min(Rest, City, City).

find max_and min([{Name, {c, Temp}} | Rest],
{Max_Name, {c, Max Temp}},
{Min Name, {c, Min Temp}}) ->

if
Temp > Max _Temp ->
Max _City = {Name, {c, Templ}}; % Change
true ->
Max City = {Max Name, {c, Max Temp}} % Unchanged
end,
if
Temp < Min Temp ->
Min City = {Name, {c, Templ}}; % Change
true ->
Min City = {Min Name, {c, Min Temp}} % Unchanged
end,

find max_and min(Rest, Max City, Min City);

find max_and min([], Max City, Min City) ->
{Max_City, Min City}.

print _max_and min({Max name, {c, Max temp}}, {Min_name, {c, Min temp}}) ->

io:format("Max temperature was ~w ¢ in ~w~n", [Max_temp, Max_name]),
io:format("Min temperature was ~w ¢ in ~w~n", [Min_temp, Min_name]).

88 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

58> c(tut7).

{ok, tut7}

59> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

moscow -10 ¢

cape_town 21.11111111111111 ¢
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢

Max temperature was 21.11111111111111 c in cape_town
Min temperature was -10 c in moscow
ok

5.2.12 If and Case

The function f i nd_max_and_ni n works out the maximum and minimum temperature. A new construct, i f , is
introduced here. If works as follows:
if
Condition 1 ->
Action 1;
Condition 2 ->
Action 2;
Condition 3 ->
Action 3;
Condition 4 ->
Action 4
end

Notice that there is no ";" before end. Conditions do the same as guards, that is, tests that succeed or fail. Erlang
starts at the top and tests until it finds a condition that succeeds. Then it evaluates (performs) the action following
the condition and ignores all other conditions and actions before the end. If no condition matches, arun-time failure
occurs. A condition that always succeeds isthe atomt r ue. Thisis often used last in ani f, meaning, do the action
following thet r ue if al other conditions have failed.

Thefollowing is a short program to show the workings of i f .

-module(tut9).
-export([test if/2]).

test if(A, B) ->

if
A == ->
io:format("A == 5~n", []),
a_equals 5;
B == ->
io:format("B == 6~n", []),
b equals 6;
A==2,B==3-> %That is A equals 2 and B equals 3
io:format("A == 2, B == 3~n", [1]),
a_equals 2 b equals 3;
A == ; B=7 -> %That is A equals 1 or B equals 7
io:format("A == 1 ; B == 7~n", [1),
a equals 1 or b equals 7
end.

Testing this program gives:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 89

5.2 Sequential Programming

60> c(tut9).

{ok, tut9}

61> tut9:test if(5,33).

A==

a_equals 5

62> tut9:test if(33,6).

B==

b equals 6

63> tut9:test if(2, 3).

A==2,B==

a_equals 2 b equals 3

64> tut9:test if(1, 33).

A::]_;B==7

a_equals 1 or b equals 7

65> tut9:test if(33, 7).

A::]_;B==7

a_equals 1 or b equals 7

66> tut9:test if(33, 33).

** exception error: no true branch found when evaluating an if expression
in function tut9:test if/2 (tut9.erl, line 5)

Notice that t ut 9: test _i f (33, 33) does not cause any condition to succeed. This leads to the run time error
i f_cl ause, here nicely formatted by the shell. See Guard Sequences for details of the many guard tests available.

case isanother construct in Erlang. Recall that the convert _| engt h function was written as:

convert length({centimeter, X}) ->
{inch, X / 2.54};

convert length({inch, Y}) ->
{centimeter, Y * 2.54}.

The same program can also be written as:

-module(tutlo).
-export([convert length/1]).

convert length(Length) ->
case Length of
{centimeter, X} ->
{inch, X / 2.54};
{inch, Y} ->
{centimeter, Y * 2.54}
end.

67> c(tutlo).

{ok, tutle}

68> tutl0:convert_length({inch, 6}).
{centimeter,15.24}

69> tutl0:convert length({centimeter, 2.5}).
{inch,0.984251968503937}

Both case and i f have return values, that is, in the above example case returned either {i nch, X/ 2. 54} or
{centineter, Y*2. 54} . The behaviour of case can aso be modified by using guards. The following example
clarifies this. It tells us the length of a month, given the year. The year must be known, since February has 29 days

inalesp year.

90 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

-module(tutll).
-export([month length/2]).

month length(Year, Month) ->

o® o of

Leap = if

trunc(Year / 400)

trunc(Year / 100)
not leap;
trunc(Year / 4) *

leap;

% ALl years divisible by 400 are leap
% Years divisible by
% Years divisible by

100 are not leap (except the 400 rule above)
4 are leap (except the 100 rule above)

* 400 == Year ->
* 100 == Year ->

4 == Year ->

when Leap == leap -> 29;

leap;
true ->
not leap
end,
case Month of
sep -> 30;
apr -> 30;
jun -> 30;
nov -> 30;
feb
feb -> 28;
jan -> 31;
mar -> 31;
may -> 31;
jul -> 31;
aug -> 31;
oct -> 31;
dec -> 31
end.

70> c(tutll).

{ok, tutll}

71> tutll:month length(2004, feb).

29

72> tutll:month length(2003, feb).

28

73> tutll:month length (1947, aug).

31

5.2.13 Built-In Functions (BIFs)

BlFs are functionsthat for some reason are built-in to the Erlang virtual machine. BIFs often implement functionality
that isimpossible or istoo inefficient to implement in Erlang. Some BIFs can be called using the function name only
but they are by default belonging to theer | ang module. For example, thecall tothe BIFt r unc below isequivalent

toacdltoerl ang: trunc.

As shown, first it is checked if ayear isleap. If ayear is divisible by 400, it is aleap year. To determine this, first
divide the year by 400 and use the BIF t r unc (more about this later) to cut off any decimals. Then multiply by 400
again and see if the same value isreturned again. For example, year 2004

2004 / 400 = 5.01

trunc(5.01)

=5

5 * 400 = 2000

2000 is not the same as 2004, so 2004 is not divisible by 400. Y ear 2000:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 91

5.2 Sequential Programming

2000 / 400 = 5.0
trunc(5.0) =
5 * 400 = 2000

|
(6]

That is, aleap year. The next two t r unc-tests evaluate if the year is divisible by 100 or 4 in the sasme way. The first
i f returns| eap or not _| eap, which lands up in the variable Leap. Thisvariable is used in the guard for f eb in
the following case that tells us how long the month is.

This example showed the use of t r unc. It is easier to use the Erlang operator r emthat gives the remainder after
division, for example:

74> 2004 rem 400.
4

So instead of writing:

trunc(Year / 400) * 400 == Year ->
leap;

it can be written:

Year rem 400 == ->
leap;

There are many other BIFssuch ast r unc. Only afew BIFs can be used in guards, and you cannot use functions you
have defined yourself in guards. (see Guard Sequences) (For advanced readers. Thisis to ensure that guards do not
have side effects.) Let us play with afew of these functionsin the shell:

75> trunc(5.6).

5

76> round(5.6).

6

77> length([a,b,c,d]).

4

78> float(5).

5.0

79> is atom(hello).

true

80> is atom("hello").

false

81> is tuple({paris, {c, 30}}).
true

82> is tuple([paris, {c, 30}]1).
false

All of these can be used in guards. Now for some BIFs that cannot be used in guards:

83> atom to list(hello).
"hello"

84> list to atom('"goodbye").
goodbye

85> integer to list(22).
woon

These three BIFs do conversions that would be difficult (or impossible) to do in Erlang.

92 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

5.2.14 Higher-Order Functions (Funs)

Erlang, like most modern functional programming languages, has higher-order functions. Here is an example using
the shell:

86> Xf = fun(X) -> X * 2 end.
#Fun<erl eval.5.123085357>
87> Xf(5).

10

Here is defined a function that doubles the value of a number and assigned this function to a variable. Thus Xf (5)
returns value 10. Two useful functions when working with listsaref or each and map, which are defined asfollows:

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);
foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->
[Fun(First) |map(Fun,Rest)];
map(Fun, [1) ->
[1.

These two functions are provided in the standard module | i st s. f or each takes alist and applies a fun to every
element in the list. map creates a new list by applying afun to every element in alist. Going back to the shell, map
isused and afun to add 3 to every element of alist:

88> Add_3 = fun(X) -> X + 3 end.
#Fun<erl eval.5.123085357>

89> lists:map(Add 3, [1,2,3]).
[4,5,6]

Let us (again) print the temperaturesin alist of cities:

90> Print City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
[City, X, Temp]) end.

#Fun<erl eval.5.123085357>

91> lists:foreach(Print City, [{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

moscow c -10
cape_town f 70

stockholm c -4

paris f 28

london f 36

ok

L et usnow defineafun that can be used to go through alist of citiesand temperatures and transform them all to Celsius.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 93

5.2 Sequential Programming

-module(tutl3).
-export([convert list to c/1]).

convert_to c({Name, {f, Temp}}) ->

{Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert_to c({Name, {c, Temp}}) ->

{Name, {c, Temp}}.

convert list to c(List) ->
lists:map(fun convert to c/1, List).

92> tutl3:convert list to c([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

[{moscow, {c,-10}},

{cape _town,{c,21}},

{stockholm, {c, -4}},

{paris,{c,-2}},

{london, {c,2}}1]

Theconvert _to_c functionisthe same as before, but here it is used as afun:

lists:map(fun convert to c/1, List)

When a function defined elsewhere is used as a fun, it can be referred to as Functi on/ Ari ty (remember that
Arity = number of arguments). So in the map-call | i sts: map(fun convert_to_c/1, List) iswritten.
Asshown, convert |i st _to_c becomesmuch shorter and easier to understand.

The standard modulel i st s aso containsafunctionsort (Fun, Li st) whereFun isafun with two arguments.
Thisfun returnst r ue if the first argument is less than the second argument, or else f al se. Sorting is added to the

convert list _to_c:

-module(tutl3).
-export([convert list to c/1]).

convert to c({Name, {f, Temp}}) ->

{Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert to c({Name, {c, Temp}}) ->

{Name, {c, Temp}}.

convert_list to_c(List) ->
New list = lists:map(fun convert_to c/1, List),
lists:sort(fun({ , {c, Templ}}, { , {c, Temp2}}) ->
Templ < Temp2 end, New list).

93> c(tutl3).
{ok,tutl3}
94> tutl3:convert list to c([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow, {c,-10}},
{stockholm, {c, -4}},
{paris,{c, -2}},
{london, {c,2}},
{cape_town,{c,21}}]

Insort thefunisused:

fun({ , {c, Templ}}, { , {c, Temp2}}) -> Templ < Temp2 end,

94 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

Here the concept of an anonymous variable " " isintroduced. This is simply shorthand for a variable that gets a

value, but the valueisignored. This can be used anywhere suitable, not just in funs. Tenpl < Tenp2 returnst r ue
if Tenpl islessthan Tenp2.

5.3 Concurrent Programming

5.3.1 Processes

One of themain reasonsfor using Erlang instead of other functional languagesis Erlang's ability to handle concurrency
and distributed programming. By concurrency is meant programs that can handle several threads of execution at the
same time. For example, modern operating systems allow you to use a word processor, a spreadsheet, a mail client,
and aprint job all running at the same time. Each processor (CPU) in the system is probably only handling one thread
(or job) at atime, but it swaps between the jobs at such arate that it gives theillusion of running them all at the same
time. It iseasy to create parallel threads of execution in an Erlang program and to allow these threads to communicate
with each other. In Erlang, each thread of execution is called a process.

(Aside: the term "process’ is usually used when the threads of execution share no data with each other and the term
"thread" when they share datain some way. Threads of execution in Erlang share no data, that is why they are called
processes).

The Erlang BIF spawn is used to create a new process: spawn(Modul e, Exported_Function, List of
Ar gunent s) . Consider the following module:

-module(tutld).
-export([start/0, say something/2]).

say something(What, 0) ->
done;

say something(What, Times) ->
io:format("~p~n", [Whatl]),
say _something(What, Times - 1).

start() ->
spawn(tutl4, say something, [hello, 31),
spawn(tutl4, say something, [goodbye, 3]).

5> c(tutl4d).

{ok,tutl4}

6> tutl4:say something(hello, 3).
hello

hello

hello

done

Asshown, thefunctionsay_sonet hi ng writesitsfirst argument the number of times specified by second argument.
The function st ar t starts two Erlang processes, one that writes "hello" three times and one that writes "goodbye"
three times. Both processes use the function say_sonet hi ng. Notice that a function used in thisway by spawn,
to start a process, must be exported from the module (that is, in the - expor t at the start of the module).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 95

5.3 Concurrent Programming

9> tutl4d:start().
hello

goodbye

<0.63.0>

hello

goodbye

hello

goodbye

Noticethat it did not write"hello" threetimes and then "goodbye" threetimes. Instead, thefirst processwrotea"hello",
the second a "goodbye", the first another "hello" and so forth. But where did the <0.63.0> come from? The return
value of afunction isthe return value of the last "thing" in the function. The last thing inthe functionst art is

spawn(tutl4, say something, [goodbye, 31).

spawn returnsaprocessidentifier, or pid, which uniquely identifiesthe process. So <0.63.0> isthe pid of thes pawn
function call above. The next example shows how to use pids.

Notice also that ~p is used instead of ~w ini o: f or mat . To quote the manual: "~p Writes the data with standard
syntax in the same way as ~w, but breaks terms whose printed representation is longer than one line into many lines
and indents each line sensibly. It also tries to detect lists of printable characters and to output these as strings”.

5.3.2 Message Passing

In the following example two processes are created and they send messages to each other a number of times.
-module(tutl5).
-export([start/0, ping/2, pong/0]).

ping(0, Pong PID) ->
Pong PID ! finished,
io:format("ping finished~n", [1);

ping(N, Pong PID) ->
Pong PID ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong PID).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start() ->

Pong PID = spawn(tutl5, pong, []),
spawn(tutl5, ping, [3, Pong PID]).

96 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

1> c(tutls).
{ok,tutl5}

2> tutl5: start().
<0.36.0>

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished

Pong finished

Thefunction st art first creates aprocess, let us call it "pong":

Pong PID = spawn(tutl5, pong, [])

This process executes t ut 15: pong() . Pong_PI D is the process identity of the "pong" process. The function
st art now creates another process "ping":

spawn(tutl5, ping, [3, Pong PID]),
This process executes:
tutl5:ping (3, Pong PID)

<0.36.0> isthereturn value from the st ar t function.

The process "pong" now does:

receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

Ther ecei ve construct is used to allow processes to wait for messages from other processes. It has the following
format:

receive
patternl ->
actionsl;
pattern2 ->
actions2;

patternN
actionsN
end.

Noticethereisno";" beforetheend.

M essages between Erlang processes are simply valid Erlang terms. That is, they can be lists, tuples, integers, atoms,
pids, and so on.

Each process has its own input queue for messages it receives. New messages received are put at the end of the
gueue. When a process executes ar ecei ve, the first message in the queue is matched against the first pattern in
ther ecei ve. If this matches, the message is removed from the queue and the actions corresponding to the pattern
are executed.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 97

5.3 Concurrent Programming

However, if the first pattern does not match, the second pattern istested. If this matches, the messageisremoved from
the queue and the actions corresponding to the second pattern are executed. If the second pattern does not match, the
third is tried and so on until there are no more patterns to test. If there are no more patterns to test, the first message
is kept in the queue and the second message is tried instead. If this matches any pattern, the appropriate actions are
executed and the second message is removed from the queue (keeping the first message and any other messages in
the queue). If the second message does not match, the third message is tried, and so on, until the end of the queue
is reached. If the end of the queue is reached, the process blocks (stops execution) and waits until a new message is
received and this procedure is repeated.

The Erlang implementation is "clever" and minimizes the number of times each message is tested against the patterns
ineachr ecei ve.

Now back to the ping pong example.

"Pong" iswaiting for messages. If theatom f i ni shed isreceived, "pong" writes"Pong finished" to the output and,
asit has nothing more to do, terminates. If it receives a message with the format:

{ping, Ping PID}

it writes "Pong received ping" to the output and sends the atom pong to the process "ping":
Ping PID ! pong

Notice how the operator "!" is used to send messages. The syntax of "!" is:
Pid ! Message

That is, Message (any Erlang term) is sent to the process with identity Pi d.

After sending the message pong to the process "ping", "pong" calls the pong function again, which causesit to get
back to ther ecei ve again and wait for another message.

Now let uslook at the process "ping". Recall that it was started by executing:
tutl5:ping (3, Pong PID)

Looking at the function pi ng/ 2, the second clause of pi ng/ 2 is executed since the value of the first argument is 3
(not 0) (first clause head is pi ng(0, Pong_PI D), second clause head is pi ng(N, Pong_PI D), so N becomes 3).

The second clause sends a message to "pong":
Pong PID ! {ping, self()},

sel f () returns the pid of the process that executes sel f (), in this case the pid of "ping". (Recall the code for
"pong", thislands up in the variable Pi ng_PI Dinther ecei ve previously explained.)

"Ping" now waits for areply from "pong":
receive
pong ->
io:format("Ping received pong~n", [1])
end,
It writes "Ping received pong" when this reply arrives, after which "ping" callsthe pi ng function again.
ping(N - 1, Pong PID)

N- 1 causes the first argument to be decremented until it becomes 0. When this occurs, the first clause of pi ng/ 2
is executed:

98 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

ping(6, Pong_ PID) ->
Pong PID ! finished,
io:format("ping finished~n", []);

Theatomfi ni shed issent to "pong" (causing it to terminate as described above) and "ping finished" is written to

the output. "Ping" then terminates as it has nothing left to do.

5.3.3 Registered Process Names

In the above example, "pong" wasfirst created to be able to give the identity of "pong" when "ping" was started. That
is, in some way "ping" must be able to know the identity of "pong" to be able to send a message to it. Sometimes
processes which need to know each other's identities are started independently of each other. Erlang thus provides a
mechanism for processes to be given names so that these names can be used as identitiesinstead of pids. Thisisdone

by using ther egi st er BIF:

register(some atom, Pid)

Let us now rewrite the ping pong example using this and give the name pong to the "pong" process:

-module(tutl6).
-export([start/0, ping/1l, pong/0]).

ping(0) ->
pong ! finished,
io:format("ping finished~n", [1]);

ping(N) ->
pong ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1).

pong() ->
receive
finished ->
io:format("Pong finished~n", []);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong()
end.

start() ->
register(pong, spawn(tutl6, pong, [1)),
spawn(tutl6, ping, [3]1).

2> c(tutle).

{ok, tutl6}

3> tutl6:start().
<0.38.0>

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished

Pong finished

Ericsson AB. All Rights Reserved

.: Erlang/OTP System Documentation | 99

5.3 Concurrent Programming

Herethest ar t / O function,
register(pong, spawn(tutl6, pong, [1)),

both spawns the "pong" process and givesit the name pong. In the "ping" process, messages can be sent to pong by:

pong ! {ping, self()},
pi ng/ 2 now becomes pi ng/ 1 astheargument Pong_PI Dis not needed.

5.3.4 Distributed Programming

L et us rewrite the ping pong program with "ping" and "pong" on different computers. First afew things are needed to
set up to get thisto work. The distributed Erlang implementation provides a very basic authentication mechanism to
prevent unintentional access to an Erlang system on another computer. Erlang systems which talk to each other must
have the same magic cookie. The easiest way to achieve thisis by having afile called . er| ang. cooki e in your
home directory on all machines on which you are going to run Erlang systems communicating with each other:

* On Windows systems the home directory is the directory pointed out by the environment variable SHOME -
you may need to set this.

e OnLinux or UNIX you can safely ignore thisand smply create afilecalled . er | ang. cooki e inthe
directory you get to after executing the command cd without any argument.

The. er | ang. cooki e fileisto contain alinewith the same atom. For example, on Linux or UNIX, inthe OS shell:

$ cd

$ cat > .erlang.cookie
this is very secret

$ chmod 400 .erlang.cookie

Thechnod above makesthe. er | ang. cooki e file accessible only by the owner of thefile. Thisisarequirement.
When you start an Erlang system that is going to talk to other Erlang systems, you must give it aname, for example:

$ erl -sname my name

We will see more details of this later. If you want to experiment with distributed Erlang, but you only have one
computer to work on, you can start two separate Erlang systems on the same computer but give them different names.
Each Erlang system running on a computer is called an Erlang node.

(Note: er | - sname assumes that all nodes are in the same IP domain and we can use only the first component of
the IP address, if we want to use nodes in different domains we use - nane instead, but then all 1P address must be
giveninfull)

Here is the ping pong example modified to run on two separate nodes:

100 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

-module(tutl?).
-export([start ping/1l, start pong/0, ping/2, pong/0]).

ping(0, Pong Node) ->
{pong, Pong Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start pong() ->
register(pong, spawn(tutl7, pong, [1)).

start ping(Pong Node) ->
spawn(tutl7, ping, [3, Pong Node]).

Let us assume there are two computers called gollum and kosken. First a node is started on kosken, called ping, and
then a node on gollum, called pong.

On kosken (on a Linux/UNIX system):
kosken> erl -sname ping
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with ~G)
(ping@kosken)1>

On gollum:
gollum> erl -sname pong
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with "G)
(pong@gollum)1>

Now the "pong" process on gollum is started:
(pong@gollum)1> tutl7:start pong().
true

And the "ping" process on kosken is started (from the code above you can see that a parameter of thest art _pi ng
function is the node name of the Erlang system where "pong" is running):

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 101

5.3 Concurrent Programming

(ping@kosken)1> tutl7:start ping(pong@gollum).
<0.37.0>

Ping received pong

Ping received pong

Ping received pong

ping finished

As shown, the ping pong program has run. On the "pong" side:

(pong@gollum)2>
Pong received ping
Pong received ping
Pong received ping
Pong finished
(pong@gollum)2>

Looking at thet ut 17 code, you see that the pong function itself is unchanged, the following lineswork in the same
way irrespective of on which node the "ping" processis executes:

{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,

Thus, Erlang pids contain information about where the process executes. So if you know the pid of a process, the "!"
operator can be used to send it a message disregarding if the processis on the same node or on a different node.

A difference is how messages are sent to a registered process on another node:

{pong, Pong Node} ! {ping, self()},

Atuple{regi st ered_name, node_nane} isusedinstead of just ther egi st er ed_nane.

In the previous example, "ping" and "pong" were started from the shells of two separate Erlang nodes. spawn can
also be used to start processes in other nodes.

The next example is the ping pong program, yet again, but thistime "ping" is started in another node:

102 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

-module(tutl8).
-export([start/1, ping/2, pong/0]).

ping(0, Pong Node) ->
{pong, Pong Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start(Ping Node) ->
register(pong, spawn(tutl8, pong, [1)),
spawn(Ping Node, tutl8, ping, [3, node()]).

Assuming an Erlang system called ping (but not the "ping" process) has already been started on kosken, then on gollum
thisis done:

(pong@gollum)1> tutl8:start(ping@kosken).
<3934.39.0>

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong finished

ping finished

Noticethat al the output is received on gollum. Thisis because the I/O system finds out where the processis spawned
from and sends all output there.

5.3.5 A Larger Example

Now for a larger example with a simple "messenger”. The messenger is a program that allows users to log in on
different nodes and send simple messages to each other.

Before starting, notice the following:
» Thisexample only shows the message passing logic - no attempt has been made to provide a nice graphical user
interface, although this can also be donein Erlang.

e Thissort of problem can be solved easier by use of thefacilitiesin OTP, which also provide methods for updating
code on the fly and so on (see OTP Design Principles).

« Thefirst program contains some inadequacies regarding handling of nodes which disappear. These are corrected
in alater version of the program.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 103

5.3 Concurrent Programming

The messenger is set up by allowing "clients' to connect to a central server and say who and where they are. That is,
auser does not need to know the name of the Erlang node where another user islocated to send a message.

Filemessenger . erl :

104 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

%% Message passing utility.

%% User interface:

%% Logon (Name)

6% One user at a time can log in from each Erlang node in the

6% system messenger: and choose a suitable Name. If the Name

6% is already logged in at another node or if someone else is

6% already logged in at the same node, login will be rejected

%% with a suitable error message.

%% Logoff()

%% Logs off anybody at that node

%% message(ToName, Message)

6% sends Message to ToName. Error messages if the user of this

6% function is not logged on or if ToName is not logged on at

%% any node.

%% One node in the network of Erlang nodes runs a server which maintains
%% data about the logged on users. The server is registered as "messenger'
%% Each node where there is a user logged on runs a client process registered
%% as "mess client"

%% Protocol between the client processes and the server

To server: {ClientPid, logon, UserName}
Reply {messenger, stop, user exists at other node} stops the client
Reply {messenger, logged on} logon was successful

To server: {ClientPid, logoff}
Reply: {messenger, logged off}

% To server: {ClientPid, logoff}
%% Reply: no reply

% To server: {ClientPid, message to, ToName, Message} send a message
% Reply: {messenger, stop, you are not logged on} stops the client

Reply: {messenger, receiver not found} no user with this name logged on
Reply: {messenger, sent} Message has been sent (but no guarantee)

To client: {message from, Name, Message},

Protocol between the "commands" and the client

% Started: messenger:client(Server Node, Name)
% To client: logoff
%% To client: {message to, ToName, Message}

Configuration: change the server node() function to return the
name of the node where the messenger server runs

-module(messenger) .
-export([start server/0, server/1l, logon/1l, logoff/0, message/2, client/2]).

Change the function below to return the name of the node where the
messenger server runs

server_node() ->

messenger@super.

@ of

00
676
00

676

%% This is the server process for the "messenger"
%% the user list has the format [{ClientPidl, Namel}, {ClientPid22, Name2},...]
server(User List) ->
receive
{From, logon, Name} ->
New User List = server logon(From, Name, User List),
server(New User List);

@ of

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 105

5.3 Concurrent Programming

{From, logoff} ->
New User List = server logoff(From, User List),
server(New User List);

{From, message to, To, Message} ->
server_transfer(From, To, Message, User List),
io:format("list is now: ~p~n", [User List]),
server(User List)

end.

%%% Start the server
start _server() ->
register(messenger, spawn(messenger, server, [[]1])).

%%% Server adds a new user to the user list
server_logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! {messenger, stop, user exists at other node}, %reject logon
User List;
false ->
From ! {messenger, logged on},
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! {messenger, stop, you are not logged on};
{value, {From, Name}} ->
server_transfer(From, Name, To, Message, User List)
end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! {messenger, receiver not found};
{value, {ToPid, To}} ->
ToPid ! {message from, Name, Message},
From ! {messenger, sent}
end.

%%% User Commands
logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(messenger, client, [server node(), Name]));
_ -> already logged on
end.

logoff() ->
mess_client ! logoff.

message(ToName, Message) ->

106 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
_ -> mess_client ! {message to, ToName, Message},
ok
end.

%%% The client process which runs on each server node
client(Server Node, Name) ->
{messenger, Server Node} ! {self(), logon, Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
{messenger, Server Node} ! {self(), logoff},
exit(normal);
{message to, ToName, Message} ->
{messenger, Server Node} ! {self(), message to, ToName, Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Message])
end,
client(Server Node).

%%% wait for a response from the server
await result() ->
receive
{messenger, stop, Why} -> % Stop the client
io:format("~p~n", [Whyl),
exit(normal);
{messenger, What} -> 9% Normal response
io:format("~p~n", [What])
end.

To use this program, you need to:

* Configuretheser ver _node() function.
e Copy the compiled code (messenger . beam to the directory on each computer where you start Erlang.

In the following example using this program, nodes are started on four different computers. If you do not have that
many machines available on your network, you can start several hodes on the same machine.

Four Erlang nodes are started up: messenger@super, c1@bilbo, c2@kosken, c3@gollum.
First the server at messenger@super is started up:

(messenger@super)1l> messenger:start server().
true
Now Peter logs on at c1@bilbo:
(cl@bilbo)1> messenger:logon(peter).
true
logged on
James logs on at c2@kosken:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 107

5.3 Concurrent Programming

(c2@kosken) 1> messenger:logon(james).
true
logged on

And Fred logs on at c3@gollum;

(c3@gollum) 1> messenger:logon(fred).
true
logged on

Now Peter sends Fred a message:

(cl@bilbo)2> messenger:message(fred, "hello").
ok
sent

Fred receives the message and sends a message to Peter and logs off:

Message from peter: "hello"

(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
ok

sent

(c3@gollum)3> messenger:logoff().

logoff

James now tries to send a message to Fred:

(c2@kosken)2> messenger:message(fred, "peter doesn't like you").
ok
receiver not found

But thisfails as Fred has already logged off.
First let uslook at some of the new concepts that have been introduced.

There are two versions of the ser ver _t ransf er function: one with four arguments (ser ver _transfer/ 4)
and one with five (ser ver _transf er/ 5). These are regarded by Erlang as two separate functions.

Notice how to write the ser ver function so that it calls itself, through ser ver (User _Li st), and thus creates
aloop. The Erlang compiler is "clever" and optimizes the code so that this really is a sort of loop and not a proper
function call. But this only works if there is no code after the call. Otherwise, the compiler expects the call to return
and make a proper function call. This would result in the process getting bigger and bigger for every loop.

Functionsinthel i st s moduleare used. Thisisavery useful module and astudy of the manual page isrecommended
(erl -man lists).lists: keymenber (Key, Position, Li sts) looksthrough alist of tuples and looks
at Posi ti onineachtupleto seeif itisthe same asKey. Thefirst element is position 1. If it finds a tuple where the
element at Posi ti on isthesameasKey, it returnst r ue, otherwisef al se.

3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
true
4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
false

lists: keydel et e worksin the same way but deletes the first tuple found (if any) and returns the remaining list:

108 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
[{x,y,z},{b,b,b},{q,r,s}]

|ists: keysearchislikel i sts: keynenber, butitreturns{val ue, Tupl e_Found} ortheatomf al se.
There are many very useful functionsinthel i st s module.

An Erlang process (conceptually) runs until it doesar ecei ve and there is no message which it wants to receivein
the message queue. "conceptually" is used here because the Erlang system shares the CPU time between the active
processes in the system.

A process terminates when there is nothing more for it to do, that is, the last function it calls simply returns and does
not call another function. Another way for a process to terminateisfor it to call exi t/ 1. Theargumenttoexi t/ 1
has a special meaning, which is discussed later. In thisexample, exi t (nor mal) isdone, which has the same effect
as aprocess running out of functionsto call.

The BIF wher ei s(Regi st er edNane) checks if a registered process of name Regi st er edNane exists. If it
exigts, the pid of that processis returned. If it does not exist, the atom undef i ned isreturned.

Y ou should by now be able to understand most of the code in the messenger-module. Let us study one case in detail:
amessage is sent from one user to another.

Thefirst user "sends" the message in the example above by:
messenger:message(fred, "hello")
After testing that the client process exists:
whereis(mess client)
And amessageissenttonmess_cl i ent:
mess client ! {message to, fred, "hello"}
The client sends the message to the server by:
{messenger, messenger@super} ! {self(), message to, fred, "hello"},

And waits for areply from the server.
The server receives this message and calls:

server _transfer(From, fred, "hello", User List),

This checksthat the pid Fr omisintheUser _Li st :
lists:keysearch(From, 1, User List)

If keysear ch returnsthe atom f al se, some error has occurred and the server sends back the message:
From ! {messenger, stop, you are not logged on}

Thisisreceived by the client, whichinturn doesexi t (nor mal) andterminates. If keysear ch returns{ val ue,
{From Nane}} itiscertain that the user islogged on and that his name (peter) isin variable Nane.

Let usnow call:
server_transfer(From, peter, fred, "hello", User List)

Notice that asthisisser ver _t ransf er/ 5, itisnot the same as the previous function ser ver _t ransf er/ 4.
Another keysear ch isdoneon User _Li st tofind the pid of the client corresponding to fred:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 109

5.4 Robustness

lists:keysearch(fred, 2, User List)

This time argument 2 is used, which is the second element in the tuple. If this returns the atom f al se, fred is not
logged on and the following message is sent:

From ! {messenger, receiver not found};
Thisisreceived by the client.
If keysear ch returns:
{value, {ToPid, fred}}
The following message is sent to fred's client:
ToPid ! {message from, peter, "hello"},
The following message is sent to peter's client:
From ! {messenger, sent}
Fred's client receives the message and printsit:

{message from, peter, "hello"} ->
io:format("Message from ~p: ~p~n", [peter, "hello"])

Peter's client receives the messageintheawai t _r esul t function.

5.4 Robustness

Several things are wrong with the messenger example in A Larger Example. For example, if a node where a user is
logged on goes down without doing alogoff, the user remainsin the server'sUser _Li st , but the client disappears.
This makesit impossible for the user to log on again as the server thinks the user already islogged on.

Or what happensif the server goesdown in the middle of sending amessage, leaving the sending client hanging forever
intheawai t _resul t function?

5.4.1 Time-outs

Before improving the messenger program, let us look at some general principles, using the ping pong program as an
example. Recall that when "ping" finishes, it tells "pong" that it has done so by sending the atom f i ni shed asa
message to "pong" so that "pong” can aso finish. Another way to let "pong"” finish isto make "pong" exit if it does
not receive a message from ping within a certain time. This can be done by adding atime-out to pong as shown in
the following example:

110 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

-module(tutl9).
-export([start ping/1l, start pong/0, ping/2, pong/0]).

ping(0, Pong Node) ->
io:format("ping finished~n", []);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong() ->
receive
{ping, Ping PID} ->

io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()

after 5000 ->
io:format("Pong timed out~n", [])

end.

start pong() ->
register(pong, spawn(tutl9, pong, [1)).

start ping(Pong Node) ->
spawn(tutl9, ping, [3, Pong Node]).

After this is compiled and the file t ut 19. beamis copied to the
(pong@kosken):

(pong@kosken)1> tutl9:start pong().
true

Pong received ping

Pong received ping

Pong received ping

Pong timed out

And the following is seen on (ping@gollum):

(ping@gollum)1> tutl9:start ping(pong@kosken).
<0.36.0>

Ping received pong

Ping received pong

Ping received pong

ping finished

Thetime-out is set in:

pong() =2
receive
{ping, Ping PID} ->

io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong()

after 5000 ->
io:format("Pong timed out~n", [1])

end.

Ericsson AB. All Rights Reserved

necessary directories, the following is seen on

.: Erlang/OTP System Documentation | 111

5.4 Robustness

Thetime-out (af t er 5000) isstarted whenr ecei ve isentered. Thetime-outiscanceled if { pi ng, Pi ng_PI D}
is received. If {pi ng, Pi ng_PI D} is not received, the actions following the time-out are done after 5000
milliseconds. af t er must belastinther ecei ve, that is, preceded by all other message reception specificationsin
ther ecei ve. Itisalso possible to call afunction that returned an integer for the time-out:

after pong timeout() ->

In general, there are better ways than using time-outs to supervise parts of adistributed Erlang system. Time-outs are
usually appropriate to supervise external events, for example, if you have expected a message from some external
system within a specified time. For example, atime-out can be used to log a user out of the messenger system if they
have not accessed it for, say, ten minutes.

5.4.2 Error Handling

Before going into details of the supervision and error handling in an Erlang system, let us see how Erlang processes
terminate, or in Erlang terminology, exit.

A process which executesexi t (nor mal) or simply runs out of things to do has anormal exit.

A process which encounters aruntime error (for example, divide by zero, bad match, trying to call afunction that does
not exist and so on) exits with an error, that is, has an abnor mal exit. A process which executes exit(Reason) where
Reason isany Erlang term except the atom nor nmal , also has an abnormal exit.

An Erlang process can set up linksto other Erlang processes. If aprocess callslink(Other_Pid) it setsup abidirectional
link between itself and the process called O her _Pi d. When aprocess terminates, it sends something called asignal
to al the processesit has links to.

The signal carries information about the pid it was sent from and the exit reason.
The default behaviour of a process that receives anormal exit isto ignore the signal.
The default behaviour in the two other cases (that is, abnormal exit) aboveis to:

* Bypassal messagesto the receiving process.
» Kill the receiving process.
* Propagate the same error signal to the links of the killed process.

In thisway you can connect all processesin atransaction together using links. If one of the processes exits abnormally,
all the processes in the transaction are killed. Asit is often wanted to create a process and link to it at the same time,
thereis a specia BIF, spawn_link that does the same as s pawn, but also creates alink to the spawned process.

Now an example of the ping pong example using links to terminate "pong":

112 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

-module(tut20).

-export([start/1,

ping(N, Pong Pid) ->
link(Pong Pid),
pingl(N, Pong Pid).

pingl(0,) ->
exit(ping);

pingl(N, Pong Pid) ->
Pong Pid ! {ping, self()},
receive

pong

->

ping/2, pong/0]).

io:format("Ping received pong~n", [1])

end,
pingl(N - 1, Pong Pid).

pong() ->

start(Ping Node) ->
PongPID = spawn(tut20, pong, []),
spawn(Ping Node, tut20, ping, [3, PongPID]).

receive

{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()

end.

(s1@bill)3> tut20:start(s2@kosken).

Pong

received

<3820.41.0>

Ping
Pong
Ping
Pong
Ping

received
received
received
received
received

ping

pong
ping
pong
ping
pong

Thisis a dlight modification of the ping pong program where both processes are spawned from the samestart/ 1
function, and the "ping" process can be spawned on a separate node. Notice the use of the | i nk BIF. "Ping" calls
exi t (pi ng) when it finishes and this causes an exit signal to be sent to "pong", which also terminates.

It is possible to modify the default behaviour of a process so that it does not get killed when it receives abnormal
exit signals. Instead, all signals are turned into normal messagesontheformat {' EXI T' , Fr onPI D, Reason} and
added to the end of the receiving process message queue. This behaviour is set by:

process flag(trap exit, true)

There are several other process flags, see erlang(3). Changing the default behaviour of aprocessin thisway is usually
not donein standard user programs, but is|eft to the supervisory programsin OTP. However, the ping pong program
ismodified to illustrate exit trapping.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 113

5.4 Robustness

-module(tut2l).
-export([start/1, ping/2, pong/0]).

ping(N, Pong Pid) ->
link(Pong Pid),
pingl(N, Pong Pid).

pingl(0,) ->
exit(ping);

pingl(N, Pong Pid) ->
Pong Pid ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
pingl(N - 1, Pong Pid).

pong() ->
process flag(trap exit, true),
pongl().

pongl() ->
receive
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pongl();
{'EXIT', From, Reason} ->
io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
end.

start(Ping Node) ->
PongPID = spawn(tut2l, pong, []),
spawn(Ping Node, tut2l, ping, [3, PongPID]).

(sl@bill) 1> tut2l:start(s2@gollum).
<3820.39.0>

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

pong exiting, got {'EXIT',<3820.39.0>,ping}

5.4.3 The Larger Example with Robustness Added

Let usreturn to the messenger program and add changes to make it more robust:

114 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

%% Message passing utility.

%% User interface:

%% Login(Name)

6% One user at a time can log in from each Erlang node in the

6% system messenger: and choose a suitable Name. If the Name

6% is already logged in at another node or if someone else is

6% already logged in at the same node, login will be rejected

%% with a suitable error message.

%% Logoff()

%% Logs off anybody at that node

%% message(ToName, Message)

6% sends Message to ToName. Error messages if the user of this

6% function is not logged on or if ToName is not logged on at

%% any node.

%% One node in the network of Erlang nodes runs a server which maintains
%% data about the logged on users. The server is registered as "messenger'
%% Each node where there is a user logged on runs a client process registered
%% as "mess client"

%% Protocol between the client processes and the server

To server: {ClientPid, logon, UserName}
Reply {messenger, stop, user exists at other node} stops the client
Reply {messenger, logged on} logon was successful

When the client terminates for some reason
To server: {'EXIT', ClientPid, Reason}

Reply: {messenger, stop, you are not logged on} stops the client
Reply: {messenger, receiver not found} no user with this name logged on
Reply: {messenger, sent} Message has been sent (but no guarantee)

To client: {message from, Name, Message},

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
%% To server: {ClientPid, message to, ToName, Message} send a message
%
o
o
o
o
o
o
o
o
o
o
% Protocol between the "commands" and the client
O,

% Started: messenger:client(Server Node, Name)
% To client: logoff
%% To client: {message to, ToName, Message}

Configuration: change the server node() function to return the
name of the node where the messenger server runs

-module(messenger).
-export([start server/0, server/0,
logon/1, logoff/0, message/2, client/2]).

% Change the function below to return the name of the node where the
% messenger server runs

server_node() ->

messenger@super.

@ of

)
i
)

i

%% This is the server process for the "messenger"

%% the user list has the format [{ClientPidl, Namel}, {ClientPid22, Name2},...]
server() ->

process flag(trap exit, true),

server([]).

@ of

server(User List) ->
receive
{From, logon, Name} ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 115

5.4 Robustness

New User List = server logon(From, Name, User List),
server(New User List);

{'EXIT', From, } ->
New User List = server logoff(From, User List),
server(New User List);

{From, message to, To, Message} ->
server_transfer(From, To, Message, User List),
io:format("list is now: ~p~n", [User List]),
server(User List)

end.

%%% Start the server
start _server() ->
register(messenger, spawn(messenger, server, [])).

%%% Server adds a new user to the user list
erver_logon(From, Name, User List) ->
%% check if logged on anywhere else
case lists:keymember(Name, 2, User List) of

w

true ->
From ! {messenger, stop, user exists at other node}, %reject logon
User List;
false ->
From ! {messenger, logged on},
link(From),
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! {messenger, stop, you are not logged on};
{value, { , Name}} ->
server_transfer(From, Name, To, Message, User List)
end.

%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! {messenger, receiver not found};
{value, {ToPid, To}} ->
ToPid ! {message from, Name, Message},
From ! {messenger, sent}
end.

%%% User Commands
logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(messenger, client, [server node(), Name]));
_ -> already logged on
end.

logoff() ->
mess_client ! logoff.

116 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

message(ToName, Message) ->
case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
-> mess_client ! {message to, ToName, Message},
ok

end.

%%% The client process which runs on each user node
client(Server Node, Name) ->
{messenger, Server Node} ! {self(), logon, Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
exit(normal);
{message to, ToName, Message} ->
{messenger, Server Node} ! {self(), message to, ToName, Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Message])
end,
client(Server Node).

%%% wait for a response from the server
await result() ->
receive
{messenger, stop, Why} -> % Stop the client
io:format("~p~n", [Whyl),
exit(normal);
{messenger, What} -> 9% Normal response
io:format("~p~n", [What])
after 5000 ->
io:format("No response from server~n", []),
exit(timeout)
end.

The following changes are added:

The messenger server traps exits. If it receives an exit signal, {' EXI T' , Fr om Reason}, this means that a client
process has terminated or is unreachable for one of the following reasons:

* Theuser haslogged off (the "logoff" message is removed).

e The network connection to the client is broken.

* The node on which the client process resides has gone down.

e Theclient processes has done someillegal operation.

If an exit signal is received as above, the tuple { Fr om Nane} is deleted from the servers User _Li st using the
server _| ogof f function. If the node on which the server runs goes down, an exit signal (automatically generated

by the system) is sent to all of the client processes: {' EXI T' , Messenger PI D, noconnect i on} causing al the
client processes to terminate.

Also, atime-out of five seconds has been introduced intheawai t _r esul t function. That is, if the server does not
reply within five seconds (5000 ms), the client terminates. Thisis only needed in the logon sequence before the client
and the server are linked.

An interesting case is if the client terminates before the server links to it. This is taken care of because linking to a
non-existent process causes an exit signal, {' EXI T' , Fr om nopr oc}, to be automatically generated. Thisis asif
the process terminated immediately after the link operation.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 117

5.5 Records and Macros

5.5 Records and Macros

Larger programs are usually written as a collection of files with awell-defined interface between the various parts.

5.5.1 The Larger Example Divided into Several Files
To illustrate this, the messenger example from the previous section is divided into the following five files:
e nmess_config. hrl

Header file for configuration data
e nmess_interface. hrl

Interface definitions between the client and the messenger
e user_interface.erl

Functions for the user interface
e nmess_client.erl

Functions for the client side of the messenger
e nmess_server.erl

Functions for the server side of the messenger

While doing this, the message passing interface between the shell, the client, and the server is cleaned up and is defined
using recor ds. Also, macr os are introduced:

%%%- - - -FILE mess_config.hrl----

%%% Configure the location of the server node,
-define(server node, messenger@super).

%%%- - - -END FILE----

o°

%%- - --FILE mess interface.hrl----

Message interface between client and server and client shell for
messenger program

o o°

LX)
670
LX)

670

%%Messages from Client to server received in server/1 function.
record(logon, {client pid, username}).

-record(message, {client pid, to name, message}).

%% {'EXIT', ClientPid, Reason} (client terminated or unreachable.

o

o°

o

%% Messages from Server to Client, received in await result/0 function
record(abort _client, {message}).
Messages are: user exists at other node,
you are not logged on
record(server_reply,{message}).
Messages are: logged on
receiver not found
sent (Message has been sent (no guarantee)
Messages from Server to Client received in client/1 function
record(message from,{from name, message}).

()
"o
()

"o

1R o
o® o°

%
%
%
%

1P d° o° o
o° o° o° o°

%% Messages from shell to Client received in client/1 function

%%% spawn(mess client, client, [server node(), Name])
-record(message to,{to name, message}).
%%% logoff

%%%- - - -END FILE----

118 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Records and Macros

%%%- - --FILE user interface.erl----

User interface to the messenger program
login(Name)

o o o o o o o
X P P P P P ®
® o® o® o° o o° o°

with a suitable error message.

logoff()
Logs off anybody at that node

@ of
@ o°
o° o°

message(ToName, Message)

o o° o o
o® o° o° o°

%
%
%
%

any node.

-module(user_interface).
-export([logon/1, logoff/0, message/2]).
-include("mess interface.hrl").
-include("mess config.hrl").

logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(mess client, client,
_ -> already logged on
end.

logoff() ->
mess client ! logoff.

message(ToName, Message) ->

One user at a time can log in from each Erlang node in the
system messenger: and choose a suitable Name. If the Name
is already logged in at another node or if someone else is
already logged in at the same node, login will be rejected

sends Message to ToName. Error messages if the user of this
function is not logged on or if ToName is not logged on at

[?server _node, Namel));

case whereis(mess client) of % Test if the client is running

undefined ->
not logged on;

_ -> mess_client ! #message to{to name=ToName, message=Message},

ok
end.

%%%- - - -END FILE----

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 119

5.5 Records and Macros

%%%----FILE mess client.erl----
%%% The client process which runs on each user node

-module(mess client).
-export([client/2]).
-include("mess interface.hrl").

client(Server Node, Name) ->
{messenger, Server Node} ! #logon{client pid=self(), username=Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
exit(normal);
#message to{to name=ToName, message=Message} ->
{messenger, Server Node} !
#message{client pid=self(), to name=ToName, message=Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Messagel)
end,
client(Server Node).
%%% wait for a response from the server
await result() ->
receive
#abort client{message=Why} ->
io:format("~p~n", [Whyl),
exit(normal);
#server reply{message=What} ->
io:format("~p~n", [What])
after 5000 ->
io:format("No response from server~n", []),
exit(timeout)
end.

%%%- - - -END FILE---

120 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Records and Macros

%%%----FILE mess server.erl----
%%% This is the server process of the messenger service

-module(mess_server).
-export([start server/0, server/0]).
-include("mess interface.hrl").

server() ->
process flag(trap exit, true),
server([]).

%%% the user list has the format [{ClientPidl, Namel},{ClientPid22, Name2},...]
server(User List) ->

io:format("User list = ~p~n", [User List]),

receive

#logon{client pid=From, username=Name} ->
New User List = server logon(From, Name, User List),
server(New User List);

{'EXIT', From, } ->
New User List = server logoff(From, User List),
server(New User List);

#message{client pid=From, to name=To, message=Message} ->
server_transfer(From, To, Message, User List),
server(User List)

end.

%%% Start the server
start _server() ->
register(messenger, spawn(?MODULE, server, [1)).

%%% Server adds a new user to the user list
server_logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! #abort client{message=user exists at other node},
User List;
false ->
From ! #server reply{message=logged on},
link(From),
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! #abort client{message=you are not logged on};
{value, { , Name}} ->
server_transfer(From, Name, To, Message, User List)
end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! #server reply{message=receiver not found};
{value, {ToPid, To}} ->
ToPid ! #message from{from name=Name, message=Message},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 121

5.5 Records and Macros

From ! #server reply{message=sent}
end.

%%%- - - -END FILE---

5.5.2 Header Files

As shown above, some files have extension . hr | . These are header filesthat areincluded inthe . er | filesby:
-include("File Name").

for example:
-include("mess interface.hrl").

Inthe case abovethefileisfetched from the samedirectory asall the other filesin the messenger example. (* manual*).
.hrl files can contain any valid Erlang code but are most often used for record and macro definitions.

5.5.3 Records
A record is defined as:
-record(name_of record,{field namel, field name2, field name3,
For example:
-record(message to,{to name, message}).
Thisisequivalent to:
{message to, To Name, Message}
Creating arecord is best illustrated by an example:
#message to{message="hello", to name=fred)
This creates:
{message to, fred, "hello"}

Notice that you do not have to worry about the order you assign values to the various parts of the records when you
create it. The advantage of using recordsisthat by placing their definitions in header files you can conveniently define
interfaces that are easy to change. For example, if you want to add a new field to the record, you only have to change
the code where the new field is used and not at every place the record is referred to. If you leave out a field when
creating arecord, it gets the value of the atom undef i ned. (*manual*)

Pattern matching with records is very similar to creating records. For example, insideacase or r ecei ve:
#message to{to name=ToName, message=Message} ->
Thisisthe same as:

{message to, ToName, Message}

5.5.4 Macros

Another thing that has been added to the messenger isamacro. Thefilemess_confi g. hr| containsthe definition:

122 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Records and Macros

%%% Configure the location of the server node,
-define(server node, messenger@super).

Thisfileisincluded inness_server.erl:
-include("mess config.hrl").

Every occurrence of ?ser ver _node inness_server. erl isnow replaced by nessenger @uper .
A macro is also used when spawning the server process:

spawn (?MODULE, server, [])

Thisis a standard macro (that is, defined by the system, not by the user). ?MODULE is always replaced by the name
of the current module (that is, the - nodul e definition near the start of the file). There are more advanced ways of
using macros with, for example, parameters (* manual*).

Thethree Erlang (. er |) filesin the messenger example are individually compiled into object codefile (. bean)j. The
Erlang system loads and links these files into the system when they are referred to during execution of the code. In
this case, they are simply put in our current working directory (that is, the place you have done "cd" to). There are
ways of putting the . beamfilesin other directories.

In the messenger example, no assumptions have been made about what the message being sent is. It can be any valid
Erlang term.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 123

6.1 Introduction

6 Erlang Reference Manual

6.1 Introduction

This section is the Erlang reference manual. It describes the Erlang programming language.

6.1.1 Purpose

Thefocusof the Erlang reference manual ison thelanguageitself, not theimplementation of it. Thelanguage constructs
are described in text and with examples rather than formally specified. Thisisto make the manual more readable. The
Erlang reference manual is not intended as a tutorial.

Information about implementation of Erlang can, for example, be found, in the following:
e System Principles
Starting and stopping, boot scripts, code loading, logging, creating target systems
» Efficiency Guide
Memory consumption, system limits
* ERTSUser'sGuide
Crash dumps, drivers

6.1.2 Prerequisites

It is assumed that the reader has done some programming and is familiar with concepts such as data types and
programming language syntax.

6.1.3 Document Conventions

In this section, the following terminology is used:

* A sequenceisoneor moreitems. For example, a clause body consists of a sequence of expressions. This means
that there must be at least one expression.

e Alist isany number of items. For example, an argument list can consist of zero, one, or more arguments.
If afeature has been added in R13A or later, thisis mentioned in the text.

6.1.4 Complete List of BIFs

For acomplete list of BIFs, their arguments and return values, see erlang(3) manual pagein ERTS.

6.1.5 Reserved Words

The following are reserved wordsin Erlang:

after and andal so band begi n bnot bor bsl bsr bxor case catch cond div end fun
if let not of or orelse receive remtry when xor

Note: cond and | et , whilereserved, are currently not used by the language.

124 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Character Set and Source File Encoding

6.2 Character Set and Source File Encoding

6.2.1 Character Set

The syntax of Erlang tokens allow the use of the full 1SO-8859-1 (Latin-1) character set. This is noticeable in the
following ways:

e All the Latin-1 printable characters can be used and are shown without the escape backslash convention.
e Atomsand variables can use al Latin-1 |etters.

Octal Decimal Class
200 - 237 128 - 159 Control characters
240 - 277 160 - 191 - ¢ | Punctuation characters
300 - 326 192 - 214 A-0 Uppercase letters

327 215 X Punctuation character
330 - 336 216 - 222 a-p Uppercase letters
337 - 366 223 - 246 k-6 Lowercase letters

367 247 + Punctuation character
370- 377 248 - 255 g-y Lowercase letters

Table 2.1: Character Classes

In Erlang/OTP R16B the syntax of Erlang tokens was extended to handle Unicode. The support was limited to string
literalsand comments. M ore about the usage of Unicodein Erlang source filescan befoundin STDLIB's User's Guide.

From Erlang/OTP 20, atoms and function names are also allowed to contain Unicode characters outside the |SO-
Latin-1 range. Module names, application names, and node names are still restricted to the ISO-Latin-1 range.

6.2.2 Source File Encoding

The Erlang source file encodi ng is selected by a comment in one of the first two lines of the source file. The first
string that matches the regular expression codi ng\ s*[: =]\ s* ([- a- zA- Z0- 9]) + selects the encoding. If the
matching string is an invalid encoding, it isignored. The valid encodings are Lat i n- 1 and UTF- 8, where the case
of the characters can be chosen fredly.

The following example selects UTF-8 as default encoding:

%% coding: utf-8

Two more examples, both selecting Latin-1 as default encoding:

%% For this file we have chosen encoding = Latin-1

%% -*- coding: latin-1 -*-

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 125

6.3 Data Types

The default encoding for Erlang source filesis changed from Latin-1 to UTF-8 since Erlang/OTP 17.0.

6.3 Data Types

Erlang provides a number of data types, which are listed in this section.

6.3.1 Terms
A piece of data of any datatypeiscalled aterm.

6.3.2 Number

There are two types of numeric literals, integer s and floats. Besides the conventional notation, there are two Erlang-
specific notations:

* S$char
ASCII value or unicode code-point of the character char .

* Dbase#val ue
Integer with the base base, that must be an integer in the range 2..36.

Leading zeroes are ignored. Single underscore _ can be inserted between digits as a visual separator.
Examples:

1> 42.

42

2> -1 234 567 890.
-1234567890

3> $A.

65

4> $\n.

10

5> 2#101.

5

6> 16#1f.

31

7> 16#4865 316F 774F 6C64.
5216630098191412324
8> 2.3.

2.3

9> 2.3e3.

2.3e3

10> 2.3e-3.

0.0023

11> 1 234.333 333
1234.333333

Representation of Floating Point Numbers

When working with floats you may not see what you expect when printing or doing arithmetic operations. This is
because floats are represented by afixed number of bitsin abase-2 system while printed floats are represented with
abase-10 system. Here are examples of this phenomenon:

> 0.1+0.2.
0.30000000000000004

Thereal numbers0. 1 and 0. 2 cannot be represented exactly as floats.

126 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 Data Types

> {36028797018963968.0, 36028797018963968 == 36028797018963968.0,
36028797018963970.0, 36028797018963970 == 36028797018963970.0}.
{3.602879701896397e16, true,
3.602879701896397e16, false}.

The value 36028797018963968 can be represented exactly as a float value but Erlang's pretty printer rounds
36028797018963968. 0 to 3. 602879701896397e16 (=36028797018963970. 0) as al values in the
range[36028797018963966. 0, 36028797018963972. 0] arerepresented by 36028797018963968. 0.

For more information about floats and issues with them see:

* What Every Programmer Should Know About Floating-Point Arithmetic,
+ 0.30000000000000004.com/, and
* Floating Point Arithmetic: Issuesand Limitations.

If you need to work with decimal fractions, for instance if you need to represent money, then you should use alibrary
that handles that or work in cents instead of euros so that you do not need decimal fractions.

6.3.3 Atom

An atom is a literal, a constant with name. An atom is to be enclosed in single quotes () if it does not begin with a
lower-case |etter or if it contains other characters than alphanumeric characters, underscore (), or @.

Examples:

hello

phone _number
'Monday'
'phone number'

6.3.4 Bit Strings and Binaries

A bit string is used to store an area of untyped memory.
Bit strings are expressed using the bit syntax.
Bit strings that consist of a number of bitsthat are evenly divisible by eight, are called binaries

Examples:

1> <<10,20>>.
<<10,20>>

2> <<"ABC">>.
<<"ABC">>

1> <<1:1,0:1>>.
<<2:2>>

For more examples, see Programming Examples.

6.3.5 Reference

A term that is unique among connected nodes. A reference can be created by calling the make_r ef / 0 BIF. The
i s_reference/ 1 BIF canbeusedtotestif atermisareference.

6.3.6 Fun

A funisafunctional object. Funs make it possible to create an anonymous function and pass the function itself -- not
its name -- as argument to other functions.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 127

href
href
href

6.3 Data Types

Example:

1> Funl = fun (X) -> X+1 end.
#Fun<erl eval.6.39074546>

2> Funl(2).

3

Read more about funs in Fun Expressions. For more examples, see Programming Examples.

6.3.7 Port Identifier

A port identifier identifies an Erlang port.
open_port/ 2, whichisused to create ports, returns a value of this data type.
Read more about ports in Ports and Port Drivers.

6.3.8 PID

PID is an abbreviation for process identifier. Each process has a PID which identifies the process. PIDs are unique
among processes that are alive on connected nodes. However, a PID of a terminated process may be reused asa PID
for anew process after awhile.

TheBIFsel f/ 0 returnsthe PID of the calling process. When creating anew process, the parent process will be able
to get the PID of the child process either via the return value, asis the case when calling the spawn/ 3 BIF, or viaa
message, which is the case when calling the spawn_r equest / 5 BIF. A PID istypically used when when sending
aprocessasigna. Thei s_pi d/ 1 BIF can be used to test whether atermisaPID.

Example:

-module(m).
-export([loop/0]).
loop() ->
receive
who_are_you ->
io:format("I am ~p~n", [self()]),

Loop ()
end.

1> P = spawn(m, loop, []).
<0.58.0>

2> P ! who_are you.

I am <0.58.0>

who_are you

Read more about processes in Processes.

6.3.9 Tuple

A tupleisacompound data type with a fixed number of terms:

{Terml, ..., TermN}

Each term Ter min the tupleis called an element. The number of elementsis said to be the size of the tuple.
There exists a number of BIFs to manipulate tuples.
Examples:

128 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 Data Types

1> P = {adam,24,{july,29}}.
{adam, 24, {july,29}}

2> element(1,P).

adam

3> element(3,P).

{july, 29}

4> P2 = setelement(2,P,25).
{adam, 25, {july,29}}

5> tuple size(P).

3

6> tuple size({}).

0

6.3.10 Map

A map is acompound data type with a variable number of key-value associations:

#{Keyl=>Valuel, ...,KeyN=>ValueN}

Each key-value association in the map is called an association pair. The key and value parts of the pair are called
elements. The number of association pairsis said to be the size of the map.

There exists anumber of BIFs to manipul ate maps.
Examples:

1> M1 = #{name=>adam,age=>24,date=>{july,29}}.
#{age => 24,date => {july,29},name => adam}
2> maps:get(name,M1).

adam

3> maps:get(date,M1).

{july,29}

4> M2 = maps:update(age,25,M1).

#{age => 25,date => {july,29},name => adam}
5> map_size(M).

3

6> map_size(#{}).

0

A collection of maps processing functions can be found in maps manual pagein STDLIB.
Read more about maps in Map Expressions.

Maps are considered to be experimental during Erlang/OTP R17.

6.3.11 List

A list isacompound data type with a variable number of terms.

[Terml,...,TermN]

Each term Ter min thelist is called an element. The number of elementsis said to be the length of thelist.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 129

6.3 Data Types

Formally, alist is either the empty list [] or consists of ahead (first element) and atail (remainder of the list). The

tail isalso alist. The latter can be expressed as[H| T] . The notation [Ter mil, . . ., Ter nl\] aboveis equivalent
withthelist[TermL| [...|[TermNI []]11].

Example:

[] isaligt, thus

[cl[]] isalist, thus
[bl[c|[]1]] isalig, thus
[al[b][c|[]1]1]] isalist,orinshort| a, b, c]

A list where the tail isalist is sometimes called a proper list. It is allowed to have alist where the tail is not alist,
for example, [a| b] . However, thistype of list is of little practical use.

Examples:

1> L1 = [a,2,{c,4}].
[a,2,{c,4}]

2> [H|T] = L1.
[a,2,{c,4}]

3> H.

a

4> T,
[2,{c,4}]

5> L2 = [d|T].
[d,2,{c,4}]

6> length(L1).
3

7> length([1]).
0

A collection of list processing functions can be found in the lists manual pagein STDLIB.

6.3.12 String

Strings are enclosed in double quotes ("), but is not adatatype in Erlang. Instead, astring " hel | 0" is shorthand for
thelist[$h, $e, $I , $I, $o] , thatis, [104, 101, 108, 108, 111] .

Two adjacent string literals are concatenated into one. Thisisdonein the compilation, thus, does not incur any runtime
overhead.

Example:

"String" g

is equivalent to

"string42"

6.3.13 Record

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. However, arecord is not a true data type. Instead, record expressions are translated to tuple expressions during
compilation. Therefore, record expressions are not understood by the shell unless special actions are taken. For details,
see the shell(3) manual pagein STDLIB).

Examples:

130 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 Data Types

-module(person).
-export([new/2]).

-record(person, {name, age}).

new(Name, Age) ->
#person{name=Name, age=Age}.

1> person:new(ernie, 44).
{person,ernie, 44}

Read more about records in Records. More examples can be found in Programming Examples.

6.3.14 Boolean
There is no Boolean data type in Erlang. Instead the atomst r ue and f al se are used to denote Boolean values.

Examples:

1> 2 =< 3.

true

2> true or false.
true

6.3.15 Escape Sequences
Within strings and quoted atoms, the following escape sequences are recognized:

Sequence Description

\b Backspace

\d Delete

\e Escape

\f Form feed

\n Newline

\r Carriage return

\s Space

\t Tab

WV Vertical tab

\XYZ,\YZ,\Z Character with octal representation XYZ, YZ or Z

\XXY Character with hexadecimal representation XY

W{X..} Character with h_exadeci mal representation; X... isone
or more hexadecimal characters

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 131

6.3 Data Types

N N
QAZ"\\/\ZZ Control A to control Z
v Single quote
\" Double quote
\ Backslash

Table 3.1: Recognized Escape Sequences

6.3.16 Type Conversions
There are a number of BIFs for type conversions.
Examples:

1> atom to list(hello).

"hello"

2> list to atom("hello").

hello

3> binary to list(<<"hello">>).
"hello"

4> binary to list(<<104,101,108,108,111>>).
"hello"

5> list to binary("hello").
<<104,101,108,108,111>>

6> float to list(7.0).
"7.00000000000000000000e+00"

7> list to float("7.000e+00").

7.0

8> integer to list(77).
g7

9> list to integer("77").
77

10> tuple to list({a,b,c}).
[a,b,c]

11> list to tuple([a,b,c]).
{a,b,c}

12> term to binary({a,b,c}).
<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
13> binary to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
{a,b,c}

14> binary_to_integer(<<"77">>).

77

15> integer to binary(77).

<<"77">>

16> float to binary(7.0).
<<"7.00000000000000000000e+00">>

17> binary to float(<<"7.000e+00">>).

7.0

132 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Pattern Matching

6.4 Pattern Matching
6.4.1 Pattern Matching

Variables are bound to values through the patter n matching mechanism. Pattern matching occurs when evaluating a
function call, case-r ecei ve-t r y- expressions and match operator (=) expressions.

In apattern matching, aleft-hand side pattern is matched against aright-hand side term. If the matching succeeds, any
unbound variables in the pattern become bound. If the matching fails, arun-time error occurs.

Examples:

1> X.

RS : variable 'X' is unbound **
2> X = 2.

2

3> X + 1.

3

4> {X, Y} = {1, 2}.

** exception error: no match of right hand side value {1,2}
5> {X, Y} = {2, 3}.

{2,3}

6> Y.

3

[}
=

6.5 Modules
6.5.1 Module Syntax

Erlang code is divided into modules. A module consists of a sequence of attributes and function declarations, each
terminated by period (.).

Example:

module attribute
module attribute

-module(m).
-export([fact/1]).

o® o°

beginning of function declaration

end of function declaration

) when N>0 ->
* fact(N-1);
)

->

fact(N

fact (0

(
N
(
1

o® o° o° o°

For a description of function declarations, see Function Declaration Syntax.

6.5.2 Module Attributes

A module attribute defines a certain property of amodule.
A module attribute consists of atag and avalue:

-Tag(Value).

Tag must be an atom, while Val ue must be a literal term. As a convenience in user-defined attributes, if the literal
term Val ue hasthe syntax Nane/ Ari t y (where Nane isan atom and Ar i t y apositive integer), the term Nane/
Arity istrandatedto { Nane, Arity}.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 133

6.5 Modules

Any module attribute can be specified. The attributes are stored in the compiled code and can be retrieved by calling
Modul e: modul e_i nfo(attri butes), or by using the module beam_lib(3) in STDLIB.

Several module attributes have predefined meanings. Some of them have arity two, but user-defined modul e attributes
must have arity one.

Pre-Defined Module Attributes
Pre-defined module attributes is to be placed before any function declaration.
- nodul e(Modul e) .

Module declaration, defining the name of the module. The name Mbdul e, an atom, isto be same asthe file name
minus the extension . er | . Otherwise code |oading does not work as intended.

This attribute is to be specified first and is the only mandatory attribute.
-export (Functions).

Exported functions. Specifies which of the functions, defined within the module, that are visible from outside
the module.

Functions isalist [Namel/ Arityl, ..., NameN ArityN], where each Nanel is an atom and
Arityl aninteger.

-i nmport (Modul e, Functi ons).

Imported functions. Can be called the same way aslocal functions, that is, without any module prefix.

Mbdul e, an atom, specifieswhich moduletoimport functionsfrom. Funct i ons isalist similar asforexport .
-conpi | e(Options).

Compiler options. Opt i ons isasingle option or alist of options. This attribute is added to the option list when
compiling the module. See the compile(3) manual page in Compiler.

-vsn(Vsn).

Module version. Vsn is any literal term and can be retrieved using beam | i b: ver si on/ 1, see the
beam_lib(3) manual pagein STDLIB.

If this attribute is not specified, the version defaults to the MD5 checksum of the module.
-on_l oad(Function).

This attribute names a function that is to be run automatically when a module is loaded. For more information,
see Running a Function When a Module is L oaded.

Behaviour Module Attribute
It is possible to specify that the module is the callback module for abehaviour:

-behaviour(Behaviour).

TheatomBehavi our givesthe name of the behaviour, which can be auser-defined behaviour or one of thefollowing
OTP standard behaviours:

* gen_server
* gen_statem
*+ gen_event

e supervisor

The spelling behavi or isalso accepted.

134 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.5 Modules

The callback functions of the module can be specified either directly by the exported functionbehavi our _i nf o/ 1:

behaviour info(callbacks) -> Callbacks.

or by a- cal | back attribute for each callback function:

-callback Name(Arguments) -> Result.

Here, Ar gunent s isalist of zero or more arguments. The - cal | back attribute is to be preferred since the extra
type information can be used by tools to produce documentation or find discrepancies.

Read more about behaviours and callback modulesin OTP Design Principles.

Record Definitions

The same syntax as for module attributesis used for record definitions:

-record(Record, Fields).
Record definitions are allowed anywhere in amodule, aso among the function declarations. Read more in Records.

Preprocessor

The same syntax as for module attributes is used by the preprocessor, which supports file inclusion, macros, and
conditional compilation:

-include("SomeFile.hrl").
-define(Macro,Replacement).
Read more in Preprocessor.

Setting File and Line
The same syntax as for module attributes is used for changing the pre-defined macros ?FI LE and ?LI1 NE:

-file(File, Line).

This attribute is used by tools, such as Y ecc, to inform the compiler that the source program is generated by another
tool. It also indicates the correspondence of sourcefilesto lines of the original user-written file, from which the source
program is produced.

Types and function specifications
A similar syntax as for module attributes is used for specifying types and function specifications:

-type my type() :: atom() | integer().
-spec my function(integer()) -> integer().

Read more in Types and Function specifications.
The description is based on EEP8 - Types and function specifications, which is not to be further updated.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 135

href

6.5 Modules

6.5.3 Comments

Comments can be placed anywhere in a module except within strings and quoted atoms. A comment begins with the
character "%", continues up to, but does not include the next end-of-line, and has no effect. Notice that the terminating
end-of-line has the effect of white space.

6.5.4 module_info/0 and module_info/1 functions
The compiler automatically inserts the two special, exported functions into each module:

e Modul e: nodul e_info/0
* Mdul e: nodul e_info/1

These functions can be called to retrieve information about the module.

module_info/0
The nodul e_i nf o/ O function in each module, returns alist of { Key, Val ue} tupleswith information about the
module. Currently, the list contain tuples with the following Keys: nodul e, at tri but es, conpi | e, exports,
nmd5 and nat i ve. The order and number of tuples may change without prior notice.
module_info/1
Thecdl nodul e_i nf o(Key) , where Key isan atom, returns a single piece of information about the module.
The following values are allowed for Key:
nodul e
Returns an atom representing the module name.
attributes

Returns a list of { Attri but eNane, Val uelLi st} tuples, where Attri but eName is the name of an
attribute, and Val uelLi st isalist of values. Notice that a given attribute can occur more than once in the list
with different values if the attribute occurs more than once in the module.

The list of attributes becomes empty if the module is stripped with the beam_lib(3) module (in STDLIB).
conpile

Returns a list of tuples with information about how the module was compiled. Thislist is empty if the module
has been stripped with the beam_lib(3) module (in STDLIB).

nd5

Returns a binary representing the MD5 checksum of the module. If the module has native code loaded, this will
be the MD5 of the native code, not the BEAM bytecode.

exports

Returnsalist of { Name, Ari t y} tupleswith al exported functions in the module.
functions

Returnsalist of { Nanme, Ari ty} tupleswith al functionsin the module.
nifs

Returnsalist of { Nane, Ari ty} tupleswith all NIF functionsin the module.
native

Return t r ue if the module has native compiled code. Return f al se otherwise. In a system compiled without
HiPE support, theresult isalwaysf al se

136 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.6 Functions

6.6 Functions

6.6.1 Function Declaration Syntax
A function declaration is a sequence of function clauses separated by semicolons, and terminated by period (.).
A function clause consists of a clause head and a clause body, separated by - >.

A clause head consists of the function name, an argument list, and an optional guard sequence beginning with the
keyword when:

Name(Patternll,...,PatternlN) [when GuardSeql] ->
Body1;

Name (PatternKl,...,PatternKN) [when GuardSegK] ->
BodyK.

The function name is an atom. Each argument is a pattern.

The number of arguments Nisthe arity of the function. A function is uniquely defined by the module name, function
name, and arity. That is, two functions with the same name and in the same module, but with different arities are two
different functions.

A function named f in the module mand with arity Nis often denoted asm f / N.

A clause body consists of a sequence of expressions separated by comma. (,):

Exprl,
ExprN
Valid Erlang expressions and guard sequences are described in Expressions.

Example:

fact(N) when N>0 ->
N * fact(N-1);

first clause head
first clause body

o o°

second clause head

fact(0) ->
1. second clause body

o o°

6.6.2 Function Evaluation

When afunctionm f / Niscalled, first the code for the function islocated. If the function cannot be found, an undef
runtime error occurs. Notice that the function must be exported to be visible outside the module it is defined in.

If the function is found, the function clauses are scanned sequentially until a clause is found that fulfills both of the
following two conditions:

* The patternsin the clause head can be successfully matched against the given arguments.
e Theguard sequence, if any, istrue.

If such a clause cannot be found, af unct i on_cl ause runtime error occurs.

If such aclauseisfound, the corresponding clause body is evaluated. That is, the expressionsin the body are evaluated
sequentially and the value of the last expression is returned.

Consider the function f act :

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 137

6.6 Functions

-module(m).
-export([fact/1]).

fact(N) when N>0 ->
N * fact(N-1);
(0)
1

fact(0) ->

Assume that you want to calculate the factoria for 1:

1> m:fact(1l).

Evaluation starts at thefirst clause. The pattern Nis matched against argument 1. The matching succeeds and the guard
(N>0) istrue, thus Nis bound to 1, and the corresponding body is evaluated:

N * fact(N-1) => (N is bound to 1)
1 * fact(0)

Now, f act (0) is caled, and the function clauses are scanned sequentially again. First, the pattern N is matched
against 0. The matching succeeds, but the guard (N>0) isfal se. Second, the pattern 0 ismatched against 0. The matching
succeeds and the body is evaluated:

fact(0) =>

*
¥ 1 =>

1
1
1
Evaluation has succeed and m f act (1) returns 1.

Ifm f act/ 1 iscalled with anegative number as argument, no clause head matches. A f unct i on_cl ause runtime
€rror occurs.

6.6.3 Tail recursion

If the last expression of a function body is a function call, a tail recursive cal is done. This is to ensure that no
system resources, for example, call stack, are consumed. This means that an infinite loop can be done if it uses tail-
recursive calls.

Example:

loop(N) ->
io:format("~w~n", [N]),
loop(N+1).

The earlier factorial example can act as a counter-example. It is not tail-recursive, since a multiplication is done on
the result of therecursivecall tof act (N- 1) .

6.6.4 Built-In Functions (BIFs)

BIFs are implemented in C code in the runtime system. BIFs do things that are difficult or impossible to implement
in Erlang. Most of the BIFs belong to the module er | ang but there are also BIFs belonging to a few other modules,
for examplel i sts andet s.

The most commonly used BIFs belonging to er | ang(3) are auto-imported. They do not need to be prefixed with
the module name. Which BIFs that are auto-imported is specified in the erlang(3) module in ERTS. For example,

138 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

standard-type conversion BIFslikeat om t o_l i st and BIFs allowed in guards can be called without specifying
the module name.

Examples:

1> tuple size({a,b,c}).

3

2> atom _to list('Erlang').
"Erlang"

Noticethat it isnormally the set of auto-imported BIFsthat are referred to when talking about 'BIFS.

6.7 Types and Function Specifications

6.7.1 The Erlang Type Language

Erlang is a dynamically typed language. Still, it comes with a notation for declaring sets of Erlang terms to form a
particular type. This effectively forms specific subtypes of the set of all Erlang terms.

Subsequently, these types can be used to specify types of record fields and also the argument and return types of
functions.

Type information can be used for the following:

e Todocument function interfaces
e To provide moreinformation for bug detection tools, such as Dialyzer
e To be exploited by documentation tools, such as EDac, for generating program documentation of various forms

It is expected that the type language described in this section supersedes and replaces the purely comment-based
@ ype and @pec declarations used by EDoc.

6.7.2 Types and their Syntax

Types describe sets of Erlang terms. Types consist of, and are built from, a set of predefined types, for example,
i nteger(),atonm(),andpi d() . Predefined types represent atypically infinite set of Erlang terms that belong to
thistype. For example, the type at on{) denotesthe set of al Erlang atoms.

For integers and atoms, it is allowed for singleton types; for example, theintegers- 1 and 42, or theatoms' f oo’ and
" bar' . All other typesare built using unions of either predefined types or singleton types. In atype union between a
type and one of its subtypes, the subtype is absorbed by the supertype. Thus, the union isthen treated asif the subtype
was not a constituent of the union. For example, the type union:

atom() | 'bar' | integer() | 42
describes the same set of terms as the type union:
atom() | integer()

Because of subtyperelationsthat exist between types, typesform alattice where the top-most element, any() , denotes
the set of all Erlang terms and the bottom-most element, none() , denotes the empty set of terms.

The set of predefined types and the syntax for types follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 139

6.7 Types and Function Specifications

he top type,
he bottom typ

any()
none()
pid()
port()
reference()
[

Atom
Bitstring
float()

Fun

Integer
List

Map

Tuple

Union
UserDefined

Type ::

—

oP

% described in T

Atom ::
I

Bitstring

atom()
Erlang Atom

o°

'foo', 'bar',
To<<>>
<<_:M>>
<< : *N>>

<<_:M, _: *N>>

M is an Intege
N is an Intege

@ of
o° o°

any function
any arity, ret

@ of
o® o°

.) -> Type)
-> Type)
List) -> Type)

Integer :: integer()

| Integer Value

| Integer Value..Integer Value 6%
Integer Value :: Erlang Integer
Erlang Character
Integer Value BinaryOp Integer
UnaryOp Integer Value

@ of
o° o°

BinaryOp :: '*' | ‘'div' | 'rem' | 'band' | '+'
UnaryOp :: '+' | '-' | 'bnot'
List list(Type)

maybe improper list(Typel, Type2)
nonempty improper list(Typel, Type2)
nonempty list(Type)

Map :: #{} %%
| #{AssociationList}
Tuple :: tuple() %%
| {}
| {TList}
AssociationlList :: Association
| Association, AssociationlList
Association :: Type := Type %%
| Type => Type %%
TList :: Type
| Type, TList

the set of all Erlang terms
e, contains no terms

ype Declarations of User-Defined Types

r Value that evaluates to a positive integer
r Value that evaluates to a positive integer

urning Type

specifies an integer range

..., -1, 0,
$a, $b ...
~Value

1, . 42

| | 'bor' | 'bxor' | 'bsl' | 'bsr

Proper list ([]-terminated)
Typel=contents, Type2=termination
Typel and Type2 as above

Proper non-empty list

denotes the empty map

denotes a tuple of any size

denotes a mandatory association
denotes an optional association

140 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

Union :: Typel | Type2

Integer values are either integer or character literals or expressions consisting of possibily nested unary or binary
operations that evaluate to an integer. Such expressions can also be used in bit strings and ranges.

The general form of bit stringsis<<_: M _: _*N>>, where Mand N must evaluate to positive integers. It denotes
abit string that isM + (k*N) bitslong (that is, a bit string that starts with Mbits and continues with k segments
of N bits each, where k is also apositive integer). The notations<<_: _*N>>, <<_: M>>, and <<>> are convenient
shorthands for the cases that Mor N, or both, are zero.

Because lists are commonly used, they have shorthand type notations. The types list(T) and
nonenpty_|ist(T) havetheshorthands[T] and[T, ...], respectively. The only difference between the two
shorthandsisthat [T] canbeanempty listbut[T, ...] cannot.

Notice that the shorthand for | i st (), that is, the list of elements of unknown type, is[_] (or[any()]),not[].
Thenotation [] specifies the singleton type for the empty list.

The general form of map typesis#{ Associ ati onLi st}. Thekey typesin Associ ati onLi st arealowed to
overlap, andif they do, theleftmost association takes precedence. A map associationhasakeyinAssoci at i onLi st
if it belongs to this type. Associ at i onLi st can contain both mandatory (: =) and optional (=>) association
types. If an association type is mandatory, an association with that type needs to be present. In the case of an optional
association typeit is not required for the key type to be present.

The notation #{} specifies the singleton type for the empty map. Note that this notation is not a shorthand for the
map() type.

For convenience, the following types are also built-in. They can be thought as predefined aliases for the type unions
also shown in the table.

Built-in type Defined as

term) any()

bi nary() << 1 *8>>
nonenpty_bi nary() << 18, _:1_*8>>
bitstring() << *1>>
nonenpty_bitstring() << 1, 1 *1>>
bool ean() ‘false' | '"true'
byt e() 0..255

char () 0..16#10ffff
nil() []

nunber () integer() | float()
list() [any()]

maybe_i nproper _list()

maybe_i nproper _list(any(), any())

nonenpty list()

nonenpty | i st (any())

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 141

6.7 Types and Function Specifications

string() [char ()]

nonenpty_string() [char(),...]

i odat a() iolist() | binary()

B ot ey | e
map() #{any() => any()}

function() fun()

modul e() at on()

nfa() {modul e(),atom(),arity()}
arity() 0..255

identifier() pid() | port() | reference()
node() at om()

timeout () "infinity' | non_neg_integer()
no_return() none()

Table 7.1: Built-in types, predefined aliases

In addition, the following three built-in types exist and can be thought as defined below, though strictly their "type
definition” is not valid syntax according to the type language defined above.

Built-in type Can bethought defined by the syntax
non_neg_i nt eger () 0..

pos_i nteger () 1.

neg_i nteger () -1

Table 7.2: Additional built-in types

Users are not allowed to define types with the same names as the predefined or built-in ones. This is checked by the
compiler and its violation results in a compilation error.

| The following built-in list types also exist, but they are expected to be rarely used. Hence, they have long names: |

142 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

nonempty maybe improper list() :: nonempty maybe improper list(any(), any())
nonempty improper list(Typel, Type2)
nonempty maybe improper list(Typel, Type2)

where the last two types define the set of Erlang terms one would expect.
Also for convenience, record notation is allowed to be used. Records are shorthands for the corresponding tuples:

Record :: #Erlang Atom{}
| #Erlang Atom{Fields}

Records are extended to possibly contain type information. This is described in Type Information in Record
Declarations.

6.7.3 Type Declarations of User-Defined Types

As seen, the basic syntax of atypeisan atom followed by closed parentheses. New types are declared using - t ype
and - opaque attributes asin the following:

-type my struct type() :: Type.
-opaque my opaq_type() :: Type.

Thetype nameistheatomny_struct _t ype, followed by parentheses. Type is atype as defined in the previous
section. A current restriction is that Ty pe can contain only predefined types, or user-defined types which are either
of the following:

e Modulelocal type, that is, with adefinition that is present in the code of the module
* Remotetype, that is, type defined in, and exported by, other modules; more about this soon.

For module-local types, the restriction that their definition existsin the module is enforced by the compiler and results
in acompilation error. (A similar restriction currently exists for records.)

Type declarations can also be parameterized by including type variables between the parentheses. The syntax of type
variables is the same as Erlang variables, that is, starts with an upper-case letter. Naturally, these variables can - and
isto - appear on the RHS of the definition. A concrete example follows:

-type orddict(Key, Val) :: [{Key, Val}l].

A module can export some types to declare that other modules are allowed to refer to them as remote types. This
declaration has the following form:

-export type([T1/A1, ..., Tk/AK]).

Here the Ti's are atoms (the name of the type) and the Ai's are their arguments
Example:

-export type([my struct type/0, orddict/2]).
Assuming that these types are exported from module' nod' , you can refer to them from other modul es using remote

type expressions like the following:

mod:my struct type()
mod:orddict(atom(), term())

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 143

6.7 Types and Function Specifications

It isnot allowed to refer to types that are not declared as exported.

Types declared as opaque represent sets of terms whose structureis not supposed to be visible from outside of their
defining module. That is, only the module defining them is allowed to depend on their term structure. Consequently,
such types do not make much sense as module local - module local types are not accessible by other modules anyway
- and is always to be exported.

6.7.4 Type Information in Record Declarations

The types of record fields can be specified in the declaration of the record. The syntax for thisis as follows:

-record(rec, {fieldl :: Typel, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). That is, the previous example is a shorthand for the
following:

-record(rec, {fieldl :: Typel, field2 :: any(), field3 :: Type3}).

In the presence of initia values for fields, the type must be declared after the initialization, as follows:

-record(rec, {fieldl = [] :: Typel, field2, field3 = 42 :: Type3}).

Theinitial valuesfor fields are to be compatible with (that is, a member of) the corresponding types. Thisis checked
by the compiler and resultsin a compilation error if aviolation is detected.

Before Erlang/OTP 19, for fieldswithout initial values, thesingletontype' undef i ned' wasaddedtoall declared
types. In other words, the following two record declarations had identical effects:

-record(rec, {fl = 42 :: integer(),

f2 11 float(),
f3 i 'a' | 'b'}).
-record(rec, {fl = 42 :: integer(),
f2 :: 'undefined' | float(),
f3 :: 'undefined' | 'a' | 'b'}).

Thisis no longer the case. If you require ' undef i ned' inyour record field type, you must explicitly add it to
the typespec, as in the 2nd example.

Any record, containing type information or not, once defined, can be used as atype using the following syntax:
#rec{}

In addition, the record fields can be further specified when using a record type by adding type information about the
field asfollows:

#rec{some field :: Type}

Any unspecified fields are assumed to have the type in the original record declaration.

144 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

When records are used to create patterns for ETS and Mnesia match functions, Dialyzer may need some help not
to emit bad warnings. For example:

-type height() :: pos integer().
-record(person, {name :: string(), height :: height()}).

lookup(Name, Tab) ->
ets:match object(Tab, #person{name = Name, ="' '}).

Dialyzer will emit awarning since' ' isnot in the type of record field hei ght .

The recommended way of dealing with thisis to declare the smallest record field types to accommodate all your
needs, and then create refinements as needed. The modified example:

-record(person, {name :: string(), height :: height() | ' '}).
-type person() :: #person{height :: height()}.

In specifications and type declarations the type per son() isto be preferred before #per son{ }.

6.7.5 Specifications for Functions

A specification (or contract) for afunction is given using the - spec attribute. The general format is as follows:

-spec Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

An implementation of the function with the same name Funct i on must exist in the current module, and the arity of
the function must match the number of arguments, else a compilation error occurs.

The following longer format with module name is also valid as long as Mbdul e is the hame of the current module.
This can be useful for documentation purposes.

-spec Module:Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

Also, for documentation purposes, argument names can be given:

-spec Function(ArgNamel :: Typel, ..., ArgNameN :: TypeN) -> RT.
A function specification can be overloaded. That is, it can have several types, separated by a semicolon (;):
-spec foo(T1l, T2) -> T3
; (T4, T5) -> T6.

A current restriction, which currently results in a warning (not an error) by the compiler, is that the domains of the
argument types cannot overlap. For example, the following specification results in awarning:

-spec foo(pos integer()) -> pos integer()
; (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input and output arguments of a function. For
example, the following specification defines the type of a polymorphic identity function:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 145

6.8 Expressions

-spec id(X) -> X.

Noticethat the above specification does not restrict theinput and output typein any way. Thesetypescan be constrained
by guard-like subtype constraints and provide bounded quantification:

-spec id(X) -> X when X :: tuple().

Currently, the: : constraint (read as «is a subtype of») is the only guard constraint that can be used in the when part
of a- spec attribute.

The above function specification uses multiple occurrences of the same type variable. That provides more type
information than the following function specification, where the type variables are missing:

-spec id(tuple()) -> tuple().

The latter specification says that the function takes some tuple and returns some tuple. The specification with the
X type variable specifies that the function takes a tuple and returns the same tuple.

However, it is up to the tools that process the specifications to choose whether to take this extra information into
account or not.

Thescopeof a:: constraintisthe(...) -> Ret Type specification after which it appears. To avoid confusion,
it is suggested that different variables are used in different constituents of an overloaded contract, as shown in the
following example:

-spec foo({X, integer()}) -> X when X :: atom()
; ([Y]) -> Y when Y :: number().

Some functions in Erlang are not meant to return; either because they define servers or because they are used to throw
exceptions, as in the following function:

my _error(Err) -> erlang:throw({error, Err}).

For such functions, it is recommended to use the special no_r et ur n() type for their "return”, through a contract
of the following form:

-spec my error(term()) -> no_return().

6.8 Expressions

In this section, all valid Erlang expressions are listed. When writing Erlang programs, it is also allowed to use macro-
and record expressions. However, these expressions are expanded during compilation and are in that sense not true
Erlang expressions. Macro- and record expressions are covered in separate sections:

* Preprocessor
* Records
6.8.1 Expression Evaluation

All subexpressions are evaluated before an expression itself is evaluated, unless explicitly stated otherwise. For
example, consider the expression:

146 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

Exprl + Expr2

Expr 1 and Expr 2, which are al'so expressions, are evaluated first - in any order - before the addition is performed.

Many of the operators can only be applied to arguments of a certain type. For example, arithmetic operators can only
be applied to numbers. An argument of the wrong type causes abadar g runtime error.

6.8.2 Terms

The simplest form of expression is aterm, that is an integer, float, atom, string, list, map, or tuple. The return value
istheterm itself.

6.8.3 Variables

A variable is an expression. If a variable is bound to a value, the return value is this value. Unbound variables are
only alowed in patterns.

Variables start with an uppercase letter or underscore (). Variables can contain a phanumeric characters, underscore
and @

Examples:

X

Namel
PhoneNumber
Phone number

“Height
Variables are bound to values using pattern matching. Erlang uses single assignment, that is, a variable can only be
bound once.

The anonymous variableis denoted by underscore (_) and can be used when avariable is required but its value can
be ignored.

Example:

[HI_1 = [1,2,3]

Variables starting with underscore (), for example, _Hei ght , are normal variables, not anonymous. However, they
are ignored by the compiler in the sense that they do not generate warnings.

Example:
The following code:

member(, []) ->
[1.
can be rewritten to be more readable:

member(Elem, []) ->
[1.

This causes a warning for an unused variable, El em if the code is compiled with the flag war n_unused_var s
set. Instead, the code can be rewritten to:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 147

6.8 Expressions

member(_Elem, []) ->
[1.

Notice that since variables starting with an underscore are not anonymous, this matches:

{., =112}
But thisfails:

{_N,_N} = {1,2}

The scope for avariableisits function clause. Variables bound in abranch of ani f , case, orr ecei ve expression
must be bound in all branches to have a value outside the expression. Otherwise they are regarded as 'unsafe' outside
the expression.

For thet r y expression variable scoping islimited so that variables bound in the expression are always ‘unsafe’ outside
the expression.

6.8.4 Patterns

A pattern has the same structure as aterm but can contain unbound variables.
Example:

Namel

[H|T]

{error,Reason}
Patterns are allowed in clause heads, case andr ecei ve expressions, and match expressions.
Match Operator = in Patterns

If Patt er n1 and Pat t er n2 arevalid patterns, the following is also avalid pattern:

Patternl = Pattern2

When matched against aterm, both Pat t er n1 and Pat t er n2 are matched against the term. The idea behind this
feature isto avoid reconstruction of terms.

Example:
f({connect,From,To,Number,Options}, To) ->
Signal = {connect,From,To,Number,Options},

f(Signal, To) ->
ignore.

can instead be written as
f({connect, ,To, , } = Signal, To) ->

f(signal, To) ->
ignore.

148 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

String Prefix in Patterns
When matching strings, the following is avalid pattern:

f("prefix" ++ Str) -> ...

Thisis syntactic sugar for the equivalent, but harder to read:

f([$p,$r,$e,$f,$1,$x | Str]) -> ...

Expressions in Patterns
An arithmetic expression can be used within a pattern if it meets both of the following two conditions:

e |t usesonly numeric or bitwise operators.
* Itsvalue can be evaluated to a constant when complied.

Example:

case {Value, Result} of
{?THRESHOLD+1, ok} -> ...

6.8.5 Match
The following matches Expr 1, a pattern, against Expr 2:

Exprl = Expr2
If the matching succeeds, any unbound variable in the pattern becomes bound and the value of Expr 2 isreturned.

If the matching fails, abadmat ch run-time error occurs.
Examples:

1> {A, B} = {answer, 42}.

{answer,42}

2> A.

answer

3> {C, D} = [1, 2].

** exception error: no match of right-hand side value [1,2]

6.8.6 Function Calls

ExprF(Exprl,...,ExprN)
ExprM:ExprF(Exprl,...,EXprN)

In the first form of function calls, Expr M Expr F(Expr 1, . .., Expr N), each of Expr Mand Expr F must be an
atom or an expression that evaluates to an atom. The function is said to be called by using the fully qualified function
name. Thisis often referred to asaremote or external function call.

Example:
lists:keysearch(Name, 1, List)

In the second form of function calls, Expr F(Expr 1, . .., Expr N), Expr F must be an atom or evaluate to afun.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 149

6.8 Expressions

If Expr F is an atom, the function is said to be called by using the implicitly qualified function name. If the
function Expr F is localy defined, it is called. Alternatively, if Expr F is explicitly imported from the Mmodule,
M Expr F(Exprl, ..., ExprN) iscaled. If Expr F is neither declared locally nor explicitly imported, Expr F
must be the name of an automatically imported BIF.

Examples:

handle(Msg, State)
spawn(m, init, [])

Exampleswhere Expr F isafun:

1> Funl = fun(X) -> X+1 end,
Funl(3).

4

2> fun lists:append/2([1,2]1, [3,4]).
[1,2,3,4]

3>

Notice that when calling alocal function, thereis a difference between using the implicitly or fully qualified function
name. The latter always refers to the latest version of the module. See Compilation and Code Loading and Function
Evaluation.

Local Function Names Clashing With Auto-Imported BIFs

If alocal function has the same name as an auto-imported BIF, the semanticsis that implicitly qualified function calls
are directed to the locally defined function, not to the BIF. To avoid confusion, thereis acompiler directive available,
-conpi l e({no_aut o_i nmport, [F/ A]}),that makesaBIF not being auto-imported. In certain situations, such
a compile-directive is mandatory.

Before OTP R14A (ERTS version 5.8), an implicitly qualified function call to afunction having the same name as
an auto-imported BIF always resulted in the BIF being called. In newer versions of the compiler, the local function
iscalled instead. Thisisto avoid that future additions to the set of auto-imported BIFs do not silently change the
behavior of old code.

However, to avoid that old (pre R14) code changed its behavior when compiled with OTP version R14A or later,
the following restriction applies: If you override the name of a BIF that was auto-imported in OTP versions prior
to R14A (ERTS version 5.8) and have an implicitly qualified call to that function in your code, you either need to
explicitly remove the auto-import using acompiler directive, or replace the call with afully qualified function call.
Otherwise you get a compilation error. See the following example:

-export([length/1,f/11).
-compile({no auto import,[length/1]}). % erlang:length/1 no longer autoimported

length([]) ->
0;
length([H|T]) ->
1 + length(T). %% Calls the local function length/1

f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
%% which is allowed in guards
long.

The same logic applies to explicitly imported functions from other modules, as to locally defined functions. It is not
allowed to both import afunction from another module and have the function declared in the modul e at the same time:

150 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

-export([f/1]).
-compile({no_auto import,[length/1]}). % erlang:length/1 no longer autoimported
-import(mod, [length/1]).

f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,

% which is allowed in guards

erlang:length(X); %% Explicit call to erlang:length in body
f(X) ->
length(X). %% mod:length/1 is called

For auto-imported Bl Fsadded in Erlang/OTP R14A and thereafter, overriding the namewith alocal function or explicit
import is aways allowed. However, if the - conpi | e({no_aut o_i nport, [F/ A]) directiveis not used, the
compiler issues awarning whenever the function is called in the module using the implicitly qualified function name.

6.8.7 If

if
GuardSeql ->
Body1l;

GuardSegN ->
BodyN
end

The branches of an i f -expression are scanned sequentially until a guard sequence Guar dSeq that evaluates to true
isfound. Then the corresponding Body (sequence of expressions separated by ',') is evaluated.

The return value of Body isthereturn value of thei f expression.

If no guard sequence is evaluated astrue, ani f _cl ause run-time error occurs. If necessary, the guard expression
t r ue can be used in the last branch, asthat guard sequence is dwaystrue.

Example:

is greater than(X, Y) ->
if
X>Y ->
true;
true -> % works as an 'else' branch
false
end

6.8.8 Case

case Expr of
Patternl [when GuardSeql] ->
Body1l;

PatternN [when GuardSegN] ->
BodyN
end

The expression Expr is evauated and the patterns Pat t er n are sequentially matched against the result. If amatch
succeeds and the optional guard sequence Guar dSeq istrue, the corresponding Body is evaluated.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 151

6.8 Expressions

Thereturn value of Body isthe return value of the case expression.
If there is no matching pattern with atrue guard sequence, acase_cl ause run-time error occurs.

Example:

is valid signal(Signal) ->
case Signal of
{signal, What, From, To} ->
true;
{signal, What, To} ->
true;
_Else ->
false
end.

6.8.9 Send

Exprl ! Expr2

Sends the value of Expr 2 as a message to the process specified by Expr 1. The value of Expr 2 is aso the return
value of the expression.

Expr 1 must evaluateto apid, an alias (reference), a port, aregistered name (atom), or atuple{ Nane, Node} . Nane

isan atom and Node is a hode name, also an atom.

* |If Expr 1 evaluatesto aname, but this nameis not registered, abadar g run-time error occurs.

» Sending amessage to areference never fails, even if the reference is no longer (or never was) an alias.

e Sending amessage to a pid never fails, even if the pid identifies a non-existing process.

» Distributed message sending, that is, if Expr 1 evaluatesto atuple { Narre, Node} (or apid located at another
node), also never fails.

6.8.10 Receive

receive
Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSegN] ->
BodyN
end

Fetches a received message present in the message queue of the process. The first message in the message queue is
matched sequentially against the patternsfrom top to bottom. If no match wasfound, the matching sequenceisrepeated
for the second message in the queue, and so on. Messages are queued in the order they were received. If a match
succeeds, that is, if the Pat t er n matches and the optional guard sequence Guar dSeq is true, then the message is
removed from the message queue and the corresponding Body is evaluated. All other messagesin the message queue
remain unchanged.

Thereturn value of Body isthe return value of ther ecei ve expression.

r ecei ve never fails. The execution is suspended, possibly indefinitely, until a message arrives that matches one of
the patterns and with a true guard sequence.

Example:

152 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

wait for_onhook() ->
receive
onhook ->
disconnect(),
idle();
{connect, B} ->
B ! {busy, self()},
wait for _onhook()
end.

Ther ecei ve expression can be augmented with a timeout:

receive
Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSegN] ->
BodyN
after
ExprT ->
BodyT
end

recei ve. . af t er works exactly asrecei ve, except that if no matching message has arrived within Expr T
milliseconds, then BodyT is evaluated instead. The return value of Body T then becomes the return value of the
recei ve. . af t er expression. Expr T isto evaluate to an integer, or the atom i nf i ni ty. The allowed integer
range is from 0 to 4294967295, that is, the longest possible timeout is almost 50 days. With a zero value the timeout
occursimmediately if there is no matching message in the message queue.

Theatomi nfi ni ty will make the process wait indefinitely for a matching message. Thisis the same as not using
atimeout. It can be useful for timeout values that are calculated at runtime.

Example:

wait for onhook() ->
receive

onhook ->
disconnect(),
idle();

{connect, B} ->
B ! {busy, self()},
wait for onhook()

after
60000 ->
disconnect(),
error()
end.

Itislegal tousear ecei ve. . af t er expression with no branches:

receive
after
ExprT ->
BodyT
end

This construction does not consume any messages, only suspends execution in the process for Expr T milliseconds.
This can be used to implement simple timers.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 153

6.8 Expressions

Example:

timer() ->
spawn(m, timer, [self()]).

timer(Pid) ->
receive
after
5000 ->
Pid ! timeout
end.

6.8.11 Term Comparisons

Exprl op Expr2

op Description

== Equal to

/= Not equal to

=< Lessthan or equal to

< Lessthan

>= Greater than or equal to
> Greater than

== Exactly equal to

=/= Exactly not equal to

Table 8.1: Term Comparison Operators.

The arguments can be of different data types. The following order is defined:

number < atom < reference < fun < port < pid < tuple < map < nil < list < bit string

ni | in the previous expression represents the empty list ([]), which is regarded as a separate type from | i st/ 0.
Thatiswhynil < |ist.

Listsare compared element by element. Tuplesare ordered by size, two tupleswith the same size are compared el ement
by element.

Bit strings are compared bit by bit. If one bit string is a prefix of the other, the shorter bit string is considered smaller.

Maps are ordered by size, two maps with the same size are compared by keys in ascending term order and then by
valuesin key order. In maps key order integers types are considered |ess than floats types.

Atoms are compared using their string value, codepoint by codepoint.

154 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

When comparing an integer to a float, the term with the lesser precision is converted into the type of the other term,
unless the operator is one of =: = or =/ =. A float is more precise than an integer until al significant figures of the
float are to the left of the decimal point. This happens when the float is larger/smaller than +/-9007199254740992.0.
The conversion strategy is changed depending on the size of the float because otherwise comparison of large floats
and integers would lose their transitivity.

Term comparison operators return the Boolean value of the expression, t r ue or f al se.

Examples:

1> 1==1.0.

true

2> 1=:=1.0.

false

3> 1> a.

false

4> #{c => 3} > #{a => 1, b => 2}.
false

5> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}.
true

6> <<2:2>> < <<128>>,

true

7> <<3:2>> < <<128>>,

false

6.8.12 Arithmetic Expressions

op Expr
Exprl op Expr2

Operator Description Argument Type
+ Unary + Number
- Unary - Number
+ number
- Number
* Number
/ Floating point division Number
bnot Unary bitwise NOT Integer
div Integer division Integer
rem Integer remainder of X/Y Integer
band Bitwise AND Integer
bor Bitwise OR Integer
bxor Arithmetic bitwise XOR Integer

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 155

6.8 Expressions

bsl Arithmetic bitshift left Integer

bsr Bitshift right Integer

Table 8.2: Arithmetic Operators.

Examples:

1> +1.
1
2> -1.
-1
3> 1+1.
2
4> 4/2.
2.0
5> 5 div 2.
2
6> 5 rem 2.
1
7> 2#10 band 2#01.
0
8> 2#10 bor 2#01.
3
9> a + 10.
** exception error: an error occurred when evaluating an arithmetic expression
in operator +/2
called as a + 10
10> 1 bsl (1 bsl 64).
** exception error: a system limit has been reached
in operator bsl/2
called as 1 bsl 18446744073709551616

6.8.13 Boolean Expressions

op Expr
Exprl op Expr2

Operator Description

not Unary logical NOT
and Logica AND

or Logica OR

xor Logical XOR

Table 8.3: Logical Operators.

Examples:

156 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

1> not true.
false
2> true and false.
false
3> true xor false.
true
4> true or garbage.
** exception error: bad argument
in operator or/2
called as true or garbage

6.8.14 Short-Circuit Expressions

Exprl orelse Expr2
Exprl andalso Expr2

Expr 2 isevaluated only if necessary. That is, Expr 2 isevauated only if:

e Exprlevauatestofal seinanorel se expression.

or

* Exprlevauatestot r ue inanandal so expression.

Returns either the value of Expr 1 (thatis, t r ue or f al se) or thevalue of Expr 2 (if Expr 2 is evaluated).
Example 1:

case A >= -1.0 andalso math:sqrt(A+1) > B of

Thisworkseven if Aislessthan- 1. 0, sincein that case, mat h: sqrt/ 1 is never evaluated.

Example 2:

OnlyOne = is atom(L) orelse
(is list(L) andalso length(L) == 1),

From Erlang/OTP R13A, Expr 2 isno longer required to evaluate to a Boolean value. As a consequence, andal so
and or el se are now tail-recursive. For instance, the following function is tail-recursive in Erlang/OTP R13A and
later:

all(Pred, [Hd|Taill]) ->

Pred(Hd) andalso all(Pred, Tail);
all(_, [1) ->

true.

6.8.15 List Operations

Exprl ++ Expr2
Exprl -- Expr2

The list concatenation operator ++ appends its second argument to its first and returns the resulting list.

The list subtraction operator - - produces a list that is a copy of the first argument. The procedure is a follows: for
each element in the second argument, the first occurrence of this element (if any) is removed.

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 157

6.8 Expressions

1> [1,2,3]1++[4,5].
[1,2,3,4,5]

2> [1,2,3,2,1,2]--[2,1,2].
[3,1,2]

6.8.16 Map Expressions

Creating Maps

Constructing a new map is done by letting an expression K be associated with another expression V:
K=V}

New maps can include multiple associations at construction by listing every association:
#{ KL => V1, .., Kn => Vn }

An empty map is constructed by not associating any terms with each other:
#{}

All keys and values in the map are terms. Any expression is first evaluated and then the resulting terms are used as
key and value respectively.

Keys and values are separated by the => arrow and associations are separated by acomma, .

Examples:
MO = #{}, % empty map
M1 = #{a => <<"hello">>}, % single association with literals
M2 = #{1 => 2, b => b}, % multiple associations with literals
M3 = #{k => {A,B}}, % single association with variables
M4 = #{{"w", 1} => f()}. % compound key associated with an evaluated expression

Here, A and B are any expressions and MD through M4 are the resulting map terms.
If two matching keys are declared, the latter key takes precedence.
Example:

1> #{1 => a, 1 => b}.
#{1 =>b }

2> #{1.0 => a, 1 => b}.
#{1 =>b, 1.0 => a}

The order in which the expressions constructing the keys (and their associated values) are evaluated is not defined.
The syntactic order of the key-value pairsin the construction is of no relevance, except in the recently mentioned case
of two matching keys.

Updating Maps
Updating a map has asimilar syntax as constructing it.

An expression defining the map to be updated, is put in front of the expression defining the keys to be updated and
their respective values:

M#{ K => V }

Here Mis aterm of type map and K and V are any expression.
If key K does not match any existing key in the map, a new association is created from key K to value V.

158 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

If key K matches an existing key in map M its associated value is replaced by the new value V. In both cases, the
evaluated map expression returns a new map.

If Mis not of type map, an exception of type badmap isthrown.
To only update an existing value, the following syntax is used:

M#{ K :=V }

Here Mis aterm of type map, V is an expression and K is an expression that evaluates to an existing key in M

If key K does not match any existing keysin map M an exception of typebadar g istriggered at runtime. If amatching
key K is present in map M its associated value is replaced by the new value V, and the evaluated map expression
returns a new map.

If Mis not of type map, an exception of type badmap isthrown.

Examples:
MO = #{},
M1 = Mo#{a => 0},
M2 = Ml#{a => 1, b => 2},
M3 = M2#{"function" => fun() -> f() end},
M4 = M3#{a := 2, b :=3}. % 'a' and 'b' was added in "M1® and "M2".

Here MD isany map. It followsthat ML .. M4 are maps aswell.
More examples:

1> M = #{1 => a}.

#{1 => a }

2> M#{1.0 => b}.

#{1 => a, 1.0 => b}.

3> M#{1 := b}.

#{1 => b}

4> M#{1.0 := b}.

** exception error: bad argument

As in construction, the order in which the key and value expressions are evaluated is not defined. The syntactic order
of the key-value pairs in the update is of no relevance, except in the case where two keys match. In that case, the
latter value is used.

Maps in Patterns

Matching of key-value associations from mapsis done as follows:
#HK:i=V}I=M

Here Mis any map. The key K must be a guard expression, with all variables already bound. V can be any pattern with
either bound or unbound variables.

If the variable V is unbound, it becomes bound to the value associated with the key K, which must exist in the map M
If the variable V is bound, it must match the value associated with Kin M

| Before OTP 23, the expression defining the key K was restricted to be either asingle variable or aliteral . |

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 159

6.8 Expressions

1> M = #{"tuple" => {1,2}}.
#{"tuple" => {1,2}}

2> #{"tuple" := {1,B}} = M.
#{"tuple" => {1,2}}

3> B.

2.

Thisbinds variable B to integer 2.
Similarly, multiple values from the map can be matched:

#{ KL :=Vl, .., Kn :=Vn } =M
HerekeysK1l .. Kn areany expressionswith literals or bound variables. If all key expressions evalute successfully

and all keysexistinmap M all variablesinVV1 .. Vn ismatched to the associated values of their respective keys.
If the matching conditions are not met, the match fails, either with:
* A badnmat ch exception.

Thisisif it is used in the context of the match operator asin the example.
e Or resulting in the next clause being tested in function heads and case expressions.

Matching in maps only alows for : = as delimiters of associations.
The order in which keys are declared in matching has no relevance.
Duplicate keys are allowed in matching and match each pattern associated to the keys:
#{ K:=Vl, K:=V2} =M
Matching an expression against an empty map literal, matches its type but no variables are bound:
#{} = Expr
This expression matches if the expression Expr is of type map, otherwise it fails with an exception badnat ch.
Here the key to be retrieved is constructed from an expression:
#{{tag, length(List)} := V} = Map

Li st must be an already bound variable.
Matching Syntax
Matching of literals as keys are alowed in function heads:

%% only start if not started
handle call(start, From, #{ state := not started } =S) ->

{reply, ok, S#{ state := start }};

%% only change if started
handle call(change, From, #{ state := start } =S) ->

o {reply, ok, S#{ state := changed }};
Maps in Guards
Maps are allowed in guards as long as all subexpressions are valid guard expressions.

The following guard BIFs handle maps:
e is map/lintheer| ang module

160 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

e is map key/2intheer| ang module
 map_get/2intheer | ang module
e map_size/lintheer| ang module

6.8.17 Bit Syntax Expressions

<<>>
<<El,...,En>>

Each element Ei specifies a segment of the bit string. Each element Ei is a value, followed by an optional size
expression and an optional type specifier list.

Ei = Value |
Value:Size |
Value/TypeSpecifierList |
Value:Size/TypeSpecifierList

Used in abit string construction, Val ue is an expression that is to evaluate to an integer, float, or bit string. If the
expression is not asingle literal or variable, it isto be enclosed in parentheses.

Used in a bit string matching, Val ue must be avariable, or an integer, float, or string.
Notice that, for example, using a string literal asin <<" abc" >> is syntactic sugar for <<$a, $b, $c>>.
Used in abit string construction, Si ze is an expression that isto evaluate to an integer.

Used in abit string matching, Si ze must be aguard expression that evaluatesto an integer. All variablesin the guard
expression must be already bound.

Before OTP 23, Si ze wasrestricted to be an integer or avariable bound to an integer.

The value of Si ze specifies the size of the segment in units (see below). The default value depends on the type (see
below):

e Forinteger itis8.

 Forfl oat itis64.

e Forbinary andbi tstring itisthewholebinary or bit string.

In matching, this default valueisonly valid for the last element. All other bit string or binary elementsin the matching
must have a size specification.

Fortheut f 8, ut f 16, and ut f 32 types, Si ze must not be given. The size of the segment isimplicitly determined
by the type and value itself.

TypeSpeci fi erLi st isalist of type specifiers, in any order, separated by hyphens (-). Default values are used
for any omitted type specifiers.

Type=integer |float |binary |bytes |bitstring|bits|utf8|utfl6|utf32
Thedefaultisi nt eger . byt es isashorthand for bi nary and bi t s isashorthand for bi t st ri ng. See
below for more information about the ut f types.

Si gnedness=si gned |unsi gned
Only matters for matching and when thetypeisi nt eger . Thedefault isunsi gned.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 161

6.8 Expressions

Endi anness=big|little|native
Native-endian means that the endianness is resolved at load time to be either big-endian or little-endian,
depending on what is native for the CPU that the Erlang machine is run on. Endianness only matters when the
Typeiseitheri nt eger,utf 16, ut f 32, or f | oat . Thedefault isbi g.

Unit=unit:IntegerlLiteral
The allowed rangeis 1..256. Defaultsto 1 fori nt eger, fl oat ,andbi t stri ng, andto 8 for bi nary. No
unit specifier must be given for the typesut f 8, ut f 16, and ut f 32.

The value of Si ze multiplied with the unit gives the number of bits. A segment of type bi nar y must have asize
that is evenly divisible by 8. For a segment of typef | oat the size must be either 64, 32, or 16.

When constructing binaries, if the size N of an integer segment is too small to contain the given integer, the most
significant bits of the integer are silently discarded and only the N |east significant bits are put into the binary.

Thetypesut f 8, ut f 16, and ut f 32 specifies encoding/decoding of the Unicode Transformation FormatsUTF-8,
UTF-16, and UTF-32, respectively.

When constructing a segment of a utf type Val ue must be an integer in the range 0..16#D7FF or
16#E000....16#10FFFF. Construction failswith abadar g exceptionif Val ue isoutside the allowed ranges. Thesize
of the resulting binary segment depends on the type or Val ue, or both:

» Forutf 8, Val ue isencoded in 1-4 bytes.
e Forutf 16, Val ue isencodedin 2 or 4 bytes.
e Forutf 32, Val ue isaways be encoded in 4 bytes.

When constructing, alitera string can be given followed by one of the UTF types, for example: <<" abc"/ ut f 8>>
which is syntactic sugar for <<$a/ ut f 8, $b/ ut f 8, $c/ ut f 8>>.

A successful match of asegment of aut f type, resultsin aninteger intherange 0..16#D7FF or 16#E000..16#10FFFF.
The match fails if the returned value falls outside those ranges.

A segment of type ut f 8 matches 1-4 bytesin the binary, if the binary at the match position contains a valid UTF-8
sequence. (See RFC-3629 or the Unicode standard.)

A segment of type ut f 16 can match 2 or 4 bytes in the binary. The match fails if the binary at the match position
does not contain alegal UTF-16 encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

A segment of type ut f 32 can match 4 bytesin the binary in the sameway asani nt eger segment matches 32 hits.
The match failsif the resulting integer is outside the legal ranges mentioned above.

Examples:

162 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

1> Binl = <<1,17,42>>.
<<1,17,42>>

2> Bin2 = <<"abc">>.

<<97,98,99>>

3> Bin3 = <<1,17,42:16>>,
<<1,17,0,42>>

4> <<A,B,C:16>> = <<1,17,42:16>>.
<<1,17,0,42>>

5> C.

42

6> <<D:16,E,F>> = <<1,17,42:16>>.
<<1,17,0,42>>

7> D.

273

8> F.

42

9> <<G,H/binary>> = <<1,17,42:16>>.
<<1,17,0,42>>

10> H.

<<17,0,42>>

11> <<G,J/bitstring>> = <<1,17,42:12>>.
<<1,17,2,10:4>>

12> J.

<<17,2,10:4>>

13> <<1024/utf8>>.

<<208,128>>

Notice that bit string patterns cannot be nested.

Notice also that "B=<<1>>" isinterpreted as "B =<<1>>" which is a syntax error. The correct way is to write a
space after '=". "B= <<1>>,

More examples are provided in Programming Exampl es.

6.8.18 Fun Expressions

fun
[Name] (Patternll,...,PatternlN) [when GuardSeql] ->
Body1;
[Name] (PatternKl,...,PatternKN) [when GuardSeqgK] ->
BodyK
end

A fun expression begins with the keyword f un and ends with the keyword end. Between them is to be a function
declaration, similar to aregular function declaration, except that the function name is optional and isto be avariable,
if any.

Variables in afun head shadow the function name and both shadow variables in the function clause surrounding the
fun expression. Variables bound in afun body are local to the fun body.

The return value of the expression is the resulting fun.

Examples:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 163

6.8 Expressions

1> Funl = fun (X) -> X+1 end.

#Fun<erl eval.6.39074546>

2> Funl(2).

3

3> Fun2 = fun (X) when X>=5 -> gt; (X) -> 1t end.
#Fun<erl eval.6.39074546>

4> Fun2(7).

gt

5> Fun3 = fun Fact(l) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
#Fun<erl eval.6.39074546>

6> Fun3(4).

24

The following fun expressions are also allowed:

fun Name/Arity
fun Module:Name/Arity

InNanme/ Arity, Name isanatomand Ari ty isaninteger. Nane/ Ari t y must specify an existing local function.
The expression is syntactic sugar for:

fun (Argl,...,ArgN) -> Name(Argl,...,ArgN) end

InModul e: Nare/ Ari ty, Modul e, and Nanme areatomsand Ar i t y isaninteger. Starting from Erlang/OTP R15,
Modul e, Name, and Ari t y can also be variables. A fun defined in this way refers to the function Nare with arity
Ari ty inthelatest version of module Modul e. A fun defined in thisway is not dependent on the code for the module
inwhich it is defined.

More examples are provided in Programming Examples.

6.8.19 Catch and Throw

catch Expr

Returns the value of Expr unless an exception occurs during the evaluation. In that case, the exception is caught.
For exceptions of classer r or , that is, run-timeerrors, {' EXI T' , { Reason, St ack}} isreturned.

For exceptions of classexi t , that is, thecodecalledexi t (Term) ,{"' EXI T', Ter n} isreturned.

For exceptions of classt hr ow, that isthe code called t hr ow(Ter nj , Ter misreturned.

Reason depends on the type of error that occurred, and St ack isthe stack of recent function calls, see Exit Reasons.

Examples:

1> catch 1+2.

3

2> catch l+a.
{'EXIT',{badarith,[...]1}}

TheBIFt hr owm(Any) can be used for non-local return from afunction. It must be evaluated within acat ch, which
returns the value Any.

Example:

5> catch throw(hello).
hello

164 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

If t hr ow 1 isnot evaluated within a catch, anocat ch run-time error occurs.

6.8.20 Try
try Exprs
catch
Classl:ExceptionPatternl[:Stacktrace] [when ExceptionGuardSeql] ->
ExceptionBodyl;
ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSegN] ->
ExceptionBodyN
end

Thisis an enhancement of catch. It gives the possibility to:

« Distinguish between different exception classes.

e Chooseto handle only the desired ones.

e Passing the othersonto anenclosingt ry or cat ch, or to default error handling.

Notice that although the keyword cat ch isused inthet r y expression, thereisnot acat ch expression within the
t ry expression.

It returns the value of Expr s (a sequence of expressions Expr1, ..., ExprN) unless an exception occurs
during the evaluation. In that case the exception is caught and the patterns Except i onPat t er n with the right
exception class Cl ass are sequentially matched against the caught exception. If a match succeeds and the optional
guard sequence Except i onGuar dSeq is true, the corresponding Except i onBody is evaluated to become the
return value.

St ackt race, if specified, must be the name of a variable (not a pattern). The stack trace is bound to the variable
when the corresponding Except i onPat t er n matches.

If an exception occurs during evaluation of Expr s but there is no matching Except i onPat t er n of the right
d ass with atrue guard sequence, the exception ispassed on asif Expr s had not been enclosedinat r y expression.

If an exception occurs during evaluation of Except i onBody, it isnot caught.
It isalowed to omit Cl ass and St ackt r ace. An omitted O ass isshorthand for t hr ow:

try Exprs
catch
ExceptionPatternl [when ExceptionGuardSeql] ->
ExceptionBody1l;
ExceptionPatternN [when ExceptionGuardSeqN] ->
ExceptionBodyN
end

Thet ry expression can have an of section:

try Exprs of
Patternl [when GuardSeql]
Body1;

1
\%

PatternN [when GuardSeqgN]
BodyN

1
\%

catch
Classl:ExceptionPatternl[:Stacktrace] [when ExceptionGuardSeql] ->
ExceptionBody1l;

ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSegN] ->

ExceptionBodyN
end

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 165

6.8 Expressions

If the evaluation of Expr s succeeds without an exception, the patterns Pat t er n are sequentially matched against
the result in the same way as for a case expression, except that if the matching fails, at ry_cl ause run-time error
occursinstead of acase_cl ause.

Only exceptions occurring during the evaluation of Expr s can be caught by the cat ch section. Exceptions occurring
inaBody or dueto afailed match are not caught.

Thet r y expression can also be augmented with an af t er section, intended to be used for cleanup with side effects:

try Exprs of
Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSegN] ->
BodyN
catch
Classl:ExceptionPatternl[:Stacktrace] [when ExceptionGuardSeql] ->
ExceptionBody1l;

ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSegN] ->
ExceptionBodyN
after
AfterBody
end

Af t er Body is evaluated after either Body or Except i onBody, no matter which one. The evaluated value of
Af t er Body islost; thereturn value of thet r y expression isthe same with an af t er section as without.

Even if an exception occurs during evaluation of Body or Except i onBody, Af t er Body isevaluated. In this case
the exception is passed on after Af t er Body has been evaluated, so the exception from the t r y expression is the
same with an af t er section as without.

If an exception occursduring evaluation of Af t er Body itself, itisnot caught. Soif Af t er Body isevaluated after an
exceptioninExpr s, Body, or Except i onBody, that exceptionislost and masked by theexceptionin Af t er Body.

Theof, cat ch, and af t er sectionsare all optional, aslong asthereisat least acat ch or anaf t er section. So
thefollowing arevalidt r y expressions:

try Exprs of
Pattern when GuardSeq ->
Body
after
AfterBody
end

try Exprs
catch
ExpressionPattern ->
ExpressionBody
after
AfterBody
end

try Exprs after AfterBody end

Next is an example of using af t er . This closes the file, even in the event of exceptionsinfil e:read/ 2 orin
bi nary_t o_t erni 1. The exceptions are the same aswithout thet r y...af t er ...end expression:

166 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

termize file(Name) ->

{ok,F} = file:open(Name, [read,binaryl]),

try
{ok,Bin} = file:read(F, 1024*1024),
binary to term(Bin)

after
file:close(F)

end.

Next isan example of usingt r y to emulatecat ch Expr:

try Expr
catch
throw:Term -> Term;
exit:Reason -> {'EXIT',Reason}
error:Reason:Stk -> {'EXIT',{Reason,Stk}}
end

6.8.21 Parenthesized Expressions

(Expr)

Parenthesized expressions are useful to override operator precedences, for example, in arithmetic expressions:

1> 1+ 2 * 3.

7

2> (1 + 2) * 3.
9

6.8.22 Block Expressions

begin
Exprl,

ExprN
end
Block expressions provide away to group a sequence of expressions, similar to aclause body. The return valueis the
value of the last expression Expr N.
6.8.23 List Comprehensions

List comprehensions is a feature of many modern functional programming languages. Subject to certain rules, they
provide a succinct notation for generating elementsin alist.

List comprehensions are analogousto set comprehensionsin Zermel o-Frankel set theory and are called ZF expressions
in Miranda. They are analogous to theset of andfi ndal | predicatesin Prolog.

List comprehensions are written with the following syntax:

[Expr || Qualifierl,...,QualifierN]

Here, Expr isan arbitrary expression, and each Qual i f i er iseither agenerator or afilter.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 167

6.8 Expressions

* A generator iswritten as:
Pattern <- ListExpr.
Li st Expr must be an expression, which evaluatesto alist of terms.
e A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression, which evaluates to a bitstring.

e Afilter isan expression, which evaluatestot r ue or f al se.

The variables in the generator patterns shadow previously bound variables, including variables bound in a previous
generator pattern.

A list comprehension returns a list, where the elements are the result of evaluating Expr for each combination of
generator list elements and hit string generator elements, for which all filters are true.

Example:
1> [X*2 || X <- [1,2,31].
[2,4,6]

When there are no generators or bit string generators, alist comprehension returns either alist with one element (the
result of evaluating Expr) if al filters are true or an empty list otherwise.

Example:
1> [2 || is_integer(2)].
[2]
2> [x || is_integer(x)].

More examples are provided in Programming Examples.

6.8.24 Bit String Comprehensions

Bit string comprehensions are analogous to List Comprehensions. They are used to generate bit strings efficiently and
succinctly.

Bit string comprehensions are written with the following syntax:

<< BitStringExpr || Qualifierl,...,QualifierN >>

Bi t St ri ngExpr isan expression that evalutes to a bit string. If Bi t St ri ngExpr isafunction call, it must be
enclosed in parentheses. Each Qual i f i er iseither agenerator, abit string generator or afilter.

e A generator iswritten as.
Pattern <- ListExpr.
Li st Expr must be an expression that evaluatesto alist of terms.

e A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression that evaluates to a bitstring.

» Afilter isan expression that evaluatestot r ue or f al se.

The variables in the generator patterns shadow previously bound variables, including variables bound in a previous
generator pattern.

A bit string comprehension returnsabit string, which is created by concatenating the resultsof evaluatingBi t St r i ng
for each combination of bit string generator elements, for which all filters are true.

168 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

Example:

1> << << (X*2) >> ||
<<X>> <= << 1,2,3 >> >>,
<<2,4,6>>

More examples are provided in Programming Examples.

6.8.25 Guard Sequences

A guard sequence is a sequence of guards, separated by semicolon (;). The guard sequence is true if at least one of
the guards istrue. (The remaining guards, if any, are not evaluated.)

Guardl; ... ; GuardK

A guar d isasequence of guard expressions, separated by commay(,). Theguardistrueif all guard expressions evaluate
totrue.

QuardeExprl, ..., GuardExprN

6.8.26 Guard Expressions

The set of valid guard expressions is a subset of the set of valid Erlang expressions. The reason for restricting the
set of valid expressions is that evaluation of a guard expression must be guaranteed to be free of side effects. Valid
guard expressions are the following:

e Variables

« Constants (atoms, integer, floats, lists, tuples, records, binaries, and maps)

» Expressionsthat construct atoms, integer, floats, lists, tuples, records, binaries, and maps

» Expressionsthat update a map

e Therecord epxressions Expr #Nane. Fi el d and #Nane. Fi el d

« Cdlstothe BIFs specified in tables Type Test BIFsand Other BIFs Allowed in Guard Expressions

e Term comparisons

e Arithmetic expressions

« Boolean expressions

» Short-circuit expressions (andal so/or el se)

is_aton 1

is_binary/1

is_bitstring/1

i s_bool ean/ 1

is float/1

is_function/1

is_function/2

is_integer/1

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 169

6.8 Expressions

is list/1

is_map/1

is_nunber/1

is pid/1l

is port/1l

is _record/2

is record/3

is referencel/l

is tuple/l

Table 8.4: Type Test BIFs

Notice that most type test BIFs have older equivalents, without the i s_ prefix. These old BIFs are retained for
backwards compatibility only and are not to be used in new code. They are also only allowed at top level. For example,
they are not allowed in Boolean expressions in guards.

abs(Nunber)

bit_size(Bitstring)

byte_size(Bitstring)

el ement (N, Tupl e)

float(Term

hd(Li st)

i s_map_key(Key, Map)

I engt h(Li st)

map_get (Key, Map)

map_si ze(Map)

node()

node(Pi d| Ref | Port)

round(Nunber)

sel f ()

170 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

size(Tupl e| Bitstring)

t1(List)

t runc(Nunber)

tupl e_size(Tupl e)

Table 8.5: Other BIFs Allowed in Guard Expressions

If an arithmetic expression, a Boolean expression, a short-circuit expression, or acall to aguard BIF fails (because of
invalid arguments), the entire guard fails. If the guard was part of a guard sequence, the next guard in the sequence
(that is, the guard following the next semicolon) is evaluated.

6.8.27 Operator Precedence

Operator precedencein falling priority:

#

Unary + - bnot not

/* div rem band and L eft associative
+ - bor bxor bsl bsr or xor L eft associative
++ -- Right associative

== /= =< <>=> == ==

andalso

orelse

=1 Right associative

catch

Table 8.6: Operator Precedence

When eval uating an expression, the operator with the highest priority isevaluated first. Operatorswith the samepriority
are evaluated according to their associativity.

Example:

The left associative arithmetic operators are evaluated | eft to right:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 171

6.9 Preprocessor

6 +5 *4 -3/ 2 evaluates to
6 + 20 - 1.5 evaluates to

26 - 1.5 evaluates to

24.5

6.9 Preprocessor

6.9.1 File Inclusion

A file can be included as follows:

-include(File).
-include lib(File).

Fi | e, astring, isto point out afile. The contents of thisfile areincluded asis, at the position of the directive.

Include filesare typically used for record and macro definitionsthat are shared by several modules. It isrecommended
to use the file name extension . hr | for includefiles.

Fi | e can start with a path component $VAR, for some string VAR If that is the case, the value of the environment
variable VAR as returned by os: get env(VAR) is substituted for $VAR. If os: get env(VAR) returnsf al se,
$VARisleft asis.

If the filename Fi | e is absolute (possibly after variable substitution), the include file with that name is included.
Otherwise, the specified file is searched for in the following directories, and in this order:

e The current working directory

* Thedirectory where the module is being compiled

e Thedirectories given by thei ncl ude option

For details, see the erlc(1) manual page in ERTS and compile(3) manual pagein Compiler.

Examples:

-include("my records.hrl").
-include("incdir/my records.hrl").
-include("/home/user/proj/my records.hrl").
-include("$PROJ ROOT/my records.hrl").

ncl ude_l i b issimilar toi ncl ude, but is not to point out an absolute file. Instead, the first path component
(possibly after variable substitution) is assumed to be the name of an application.

Example:

-include lib("kernel/include/file.hrl").

The code server usescode: | i b_di r (ker nel) tofind the directory of the current (latest) version of Kernel, and
then the subdirectory i ncl ude issearched for thefilefil e. hrl .

6.9.2 Defining and Using Macros

A macro is defined as follows:

-define(Const, Replacement).
-define(Func(Varl,...,VarN), Replacement).

172 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Preprocessor

A macro definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the macro.

If amacro isused in several modules, it is recommended that the macro definition is placed in an include file.

A macro is used as follows:

?Const
?Func(Argl,...,ArgN)

Macros are expanded during compilation. A simple macro ?Const isreplaced with Repl acenent .
Example:

-define(TIMEOUT, 200).

call(Request) ->
server:call(refserver, Request, ?TIMEOUT).

Thisis expanded to:

call(Request) ->
server:call(refserver, Request, 200).

A macro ?Func(Argl, ..., ArgN) isreplaced with Repl acenent , where al occurrences of a variable Var
from the macro definition are replaced with the corresponding argument Ar g.

Example:
-define(MACRO1(X, Y), {a, X, b, Y}).
bar(X) ->
?MACRO1(a, b),
?MACRO1(X, 123)

Thisis expanded to:

bar(X) ->
{a,a,b,b},
{a,X,b,123}.

Itisgood programming practice, but not mandatory, to ensure that amacro definitionisavalid Erlang syntactic form.

To view the result of macro expansion, a module can be compiled with the' P' option. conpi l e: fil e(Fil e,
['P"]).Thisproducesalisting of the parsed code after preprocessing and parse transforms, in thefileFi | e. P.

6.9.3 Predefined Macros

The following macros are predefined:

?MODULE

The name of the current module.
?MODULE_STRI NG

The name of the current module, as a string.
?FI LE.

The file name of the current module.
?LI NE.

The current line number.
?MACHI NE.

The machine name, ' BEAM .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 173

6.9 Preprocessor

?FUNCTI ON_NAME
The name of the current function.
?FUNCTI ON_ARI TY
The arity (number of arguments) for the current function.
?0TP_RELEASE
The OTP release that the currently executing ERTS application is part of, as an integer. For details, see
erl ang: system i nfo(ot p_rel ease). Thismacrowasintroduced in OTP release 21.

6.9.4 Macros Overloading

It is possible to overload macros, except for predefined macros. An overloaded macro has more than one definition,
each with a different number of arguments.

The feature was added in Erlang 5.7.5/0TP R13B04.

A macro ?Func(Argl, ..., ArgN) witha(possibly empty) list of arguments results in an error message if there
isat least one definition of Func with arguments, but none with N arguments.

Assuming these definitions:

-define(FO(), c).
-define(F1(A), A).
-define(C, m:f).

the following does not work:

fo() ->
?FO. % No, an empty list of arguments expected.

f1(A) ->
?F1(A, A). % No, exactly one argument expected.

On the other hand,

f() ->
?2C().

is expanded to

f() ->
m:f().

6.9.5 Flow Control in Macros
The following macro directives are supplied:

- undef (Macr o) .
Causes the macro to behave asif it had never been defined.
-i fdef (Macro).
Evaluate the following lines only if Macr o is defined.
-i f ndef (Macro).
Evaluate the following lines only if Macr o is not defined.
-el se.
Only allowed after ani f def ori f ndef directive. If that condition isfalse, thelinesfollowing el se are
evaluated instead.
-endif.
Specifiestheend of ani f def , ani f ndef directive, ortheendof ani f orel i f directive.
-if(Condition).
Evaluates the following lines only if Condi t i on evaluatesto true.

174 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Preprocessor

-elif(Condition).
Only allowed after ani f or another el i f directive. If theprecedingi f orel i f directivesdo not evaluate to
true, and the Condi t i on evaluatesto true, thelinesfollowing theel i f are evaluated instead.

| The macro directives cannot be used inside functions. |

Example:

-module(m).

-ifdef(debug).

-define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
-else.

-define(LOG(X), true).
-endif.

When trace output is desired, debug isto be defined when the module mis compiled:

% erlc -Ddebug m.erl

or

1> c(m, {d, debug}).
{ok,m}

?LOG Ar g) isthenexpandedto acall toi o: f or mat / 2 and provide the user with some simple trace outpuit.
Example:

-module(m)

-ifdef (OTP_RELEASE).
%% OTP 21 or higher
-if(?0TP_RELEASE >= 22).
%% Code that will work in OTP 22 or higher
-elif (?0TP_RELEASE >= 21).
%% Code that will work in OTP 21 or higher
-endif.
-else.
%% OTP 20 or lower.
-endif.

The code uses the OTP_REL EASE macro to conditionally select code depending on release.

6.9.6 -error() and -warning() directives

Thedirective- er r or (Ter m) causes acompilation error.
Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 175

6.10 Records

-module(t).
-export([version/0]).

-ifdef (VERSION) .

version() -> ?VERSION.

-else.

-error("Macro VERSION must be defined.").
version() -> "".

-endif.

The error message will look like this:

% erlc t.erl
t.erl:7: -error("Macro VERSION must be defined.").

Thedirective - war ni ng(Ter m) causes a compilation warning.

Example:

-module(t).
-export([version/0]).

-ifndef (VERSION) .

-warning("Macro VERSION not defined -- using default version.").
-define(VERSION, "0").

-endif.

version() -> ?VERSION.

The warning message will ook like this:

% erlc t.erl
t.erl:5: Warning: -warning("Macro VERSION not defined -- using default version.").

The-error () and-war ni ng() directiveswere added in OTP 19.

6.9.7 Stringifying Macro Arguments

The construction ??Ar g, where Ar g is a macro argument, is expanded to a string containing the tokens of the
argument. Thisis similar to the #ar g stringifying constructionin C.

Example:
-define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Calll])).

?TESTCALL (myfunction(1,2)),
?TESTCALL (you: function(2,1)).

resultsin

io:format("Call ~s: ~w~n",["myfunction (1 ,
io:format("Call ~s: ~w~n",["you : function (

)", myfunction(1,2)1),

2
2,1)",you:function(2,1)]).

That is, atrace output, with both the function called and the resulting value.

6.10 Records

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. Record expressions are translated to tuple expressions during compilation. Therefore, record expressions are not
understood by the shell unless special actions are taken. For details, see the shell(3) manual pagein STDLIB.

176 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.10 Records

More examples are provided in Programming Exampl es.

6.10.1 Defining Records

A record definition consists of the name of therecord, followed by thefield names of the record. Record and field names
must be atoms. Each field can be given an optional default value. If no default valueis supplied, undef i ned isused.

-record(Name, {Fieldl [= Valuel],
FieldN [= ValueN]}).

A record definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the record.

If arecord isused in several modules, it is recommended that the record definition is placed in an include file.

6.10.2 Creating Records

Thefollowing expression creates anew Nane record where the value of each field Fi el dI isthe value of evaluating
the corresponding expression Expr | :
#Name{Fieldl=Exprl, ...,FieldK=ExprK}

The fields can be in any order, not necessarily the same order as in the record definition, and fields can be omitted.
Omitted fields get their respective default value instead.

If several fields are to be assigned the same value, the following construction can be used:

#Name{Fieldl=Exprl,...,FieldK=ExprK, =ExprL}

Omitted fieldsthen get the value of evaluating Expr L instead of their default values. Thisfeatureisprimarily intended
to be used to create patterns for ETS and Mnesia match functions.

Example:

-record(person, {name, phone, address}).

lookup(Name, Tab) ->
ets:match object(Tab, #person{name=Name, =' '}).

6.10.3 Accessing Record Fields

Expr#Name.Field

Returns the value of the specified field. Expr isto evaluate to a Namne record.

The following expression returns the position of the specified field in the tuple representation of the record:

#Name.Field

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 177

6.10 Records

-record(person, {name, phone, address}).

lookup(Name, List) ->
lists:keysearch(Name, #person.name, List).

6.10.4 Updating Records

Expr#Name{Fieldl=Exprl,...,FieldK=ExprK}

Expr istoevaluateto aName record. A copy of thisrecord isreturned, with the value of each specified field Fi el dl
changed to the value of evaluating the corresponding expression Expr | . All other fields retain their old values.

6.10.5 Records in Guards

Since record expressions are expanded to tuple expressions, creating records and accessing record fields are allowed
in guards. However all subexpressions, for example, for field initiations, must be valid guard expressions as well.

Examples:

handle(Msg, State) when Msg==#msg{to=void, no=3} ->
handle(Msg, State) when State#state.running==true ->

Thereisasoatypetest BIFi s_record(Term RecordTag).

Example:

is person(P) when is record(P, person) ->
true;

is person(P) ->
false.

6.10.6 Records in Patterns

A pattern that matches a certain record is created in the same way as arecord is created:

#Name{Fieldl=Exprl, ...,FieldK=ExprK}

In this case, one or more of Expr 1...Expr K can be unbound variables.

6.10.7 Nested Records

Beginning with Erlang/OTP R14, parentheses when accessing or updating nested records can be omitted. Assume the
following record definitions:

-record(nrec@, {name
-record(nrecl, {name
-record(nrec2, {name

"nested0"}).
"nestedl", nrecO=#nrec0{}}).
"nested2", nrecl=#nrecl{}}).

N2 = #nrec2{},

178 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.11 Errors and Error Handling

Before R14, parentheses were needed as follows:

"nested0" = ((N2#nrec2.nrecl)#nrecl.nrec0)#nrec0.name,
NOn = ((N2#nrec2.nrecl)#nrecl.nrecO)#nrecO{name = "nested0a"},

Since R14, the following can also be written:

"nested0" = N2#nrec2.nrecl#nrecl.nrec0#nrec0.name,
NOn = N2#nrec2.nrecl#nrecl.nrecO#nrecO{name = "nested@a"},

6.10.8 Internal Representation of Records

Record expressions are translated to tuple expressions during compilation. A record defined as:

-record(Name, {Fieldl,...,FieldN}).

isinternally represented by the tuple:

{Name,Valuel,...,ValueN}

Here each Val uel isthe default valuefor Fi el dI .
To each module using records, a pseudo function is added during compilation to obtain information about records:

record info(fields, Record) -> [Field]
record info(size, Record) -> Size

Si ze isthe size of the tuple representation, that is, one more than the number of fields.
In addition, #Recor d. Name returns the index in the tuple representation of Nane of the record Recor d.

Nanme must be an atom.

6.11 Errors and Error Handling

6.11.1 Terminology
Errors can roughly be divided into four different types:

Compile-time errors
When the compiler fails to compile the program, for example a syntax error.

Logical errors
When a program does not behave as intended, but does not crash. An example is that nothing happens when a
button in a graphical user interfaceis clicked.

Run-time errors
When a crash occurs. An example is when an operator is applied to arguments of the wrong type. The Erlang
programming language has built-in features for handling of run-time errors. A run-time error can also be
emulated by calling er r or (Reason) . Run-time errors are exceptions of classer r or .

Generated errors
When the code itself callsexi t/ 1 ort hr ow 1. Generated errors are exceptions of classexi t ort hr ow.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 179

6.11 Errors and Error Handling

When an exception occursin Erlang, execution of the process that evaluated the erroneous expression is stopped. This
isreferred to as afailure, that execution or evaluation fails, or that the process fails, ter minates, or exits. Notice that
a process can terminate/exit for other reasons than afailure.

A processthat terminates emitsan exit signal with an exit r eason that describeswhy the processterminated. Normally,
some information about any erroneoustermination is printed to the terminal. See Process Termination in the Processes
chapter for more details on termination.

6.11.2 Exceptions

Exceptions are run-time errors or generated errors and are of three different classes, with different origins. The try
expression can distinguish between the different classes, whereas the catch expression cannot. t ry and cat ch are
described in Expressions.

Class Origin
Run-time error, for example, 1+a, or the process called
error
error/1,2
exit Theprocesscalledexi t/ 1
t hr ow Theprocesscaledt hr ow 1

Table 11.1: Exception Classes.

All of the above exceptions can also be generated by calling er | ang: rai se/ 3.

An exception consists of its class, an exit reason (see Exit Reason), and a stack trace (which aidsin finding the code
location of the exception).

The stack trace can be bound to avariable from within at r y expression for any exception class, or as part of the exit
reason when arun-time error is caught by acat ch. Example:

> {'EXIT',{test,Stacktrace}} = (catch error(test)), Stacktrace.
[{shell,apply fun,3,[1},

{erl _eval,do apply,6,[]},

.
> try throw(test) catch Class:Reason:Stacktrace -> Stacktrace end.
[{shell,apply fun,3,[1},

{erl _eval,do apply,6,[]},

.

The call-stack back trace (stacktrace)

The stack back-trace (stacktrace) is alist contains { Modul e, Function, Arity, Extralnfo} andor
{Fun, Arity, Extralnfo} tuples. Thefield Ari ty inthetuple can bethe argument list of that function call
instead of an arity integer, depending on the exception.

Ext r al nf o isa(possibly empty) list of two-element tuplesin any order that provides additional information about
the exception. The first element is an atom describing the type of information in the second element. The following
items can occur:

error_info
The second element of the tuple is amap providing additional information about what caused the exception.
Thisinformation can be created by callingerror/ 3 andisusedbyerl _error: format_excepti on/ 4.

180 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.11 Errors and Error Handling

file
The second element of the tupleisastring (list of characters) representing the filename of the source file of the
function.

line
The second element of the tuple is the line number (an integer > 0) in the source file where the exception
occurred or the function was called.

Developers should rely on stacktrace entries only for debugging purposes.

TheVM performstail call optimization, which does not add new entriesto the stacktrace, and also limits stacktraces
to a certain depth. Furthermore, compiler options, optimizations and future changes may add or remove stacktrace
entries, causing any code that expects the stacktrace to be in a certain order or contain specific items to fail.

The only exception to this rule is the class er r or with the reason undef which is guaranteed to include the
Modul e, Functi on and Ari t y of the attempted function as the first stacktrace entry.

6.11.3 Handling of Run-time Errors in Erlang

Error Handling Within Processes

It is possible to prevent run-time errors and other exceptions from causing the process to terminate by using cat ch
ort ry, see Expressions about catch and try.

Error Handling Between Processes

Processes can monitor other processes and detect process terminations, see Processes.

6.11.4 Exit Reasons

When arun-time error occurs, that is an exception of class er r or . The exit reason is atuple { Reason, St ack},
where Reason isaterm indicating the type of error:

Reason Typeof Error

badar g Bad argument. The argument is of wrong datatype, or is

otherwise badly formed.
badarith Bad argument in an arithmetic expression.
{badnmat ch, V} Evaluation of amatch expression failed. The value V

did not match.

No matching function clause is found when evaluating a

function cl ause .
= function call.

No matching branch is found when evaluating acase

{case_clause, V} expression. The value V did not match.

No true branch is found when evaluating an i f

i f _clause .
- expression.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 181

6.12 Processes

No matching branch is found when evaluating the of-

{try_clause, V} section of at ry expression. The value V did not match.

The function cannot be found when evaluating a

undef function call.

{badf un, F} Something iswrong with afun F.

A funis applied to the wrong number of arguments. F

{badarity, F} describes the fun and the arguments.

Thetimeout valueinar ecei ve. . af t er expression
ti meout _val ue is evaluated to something else than an integer or
infinity.

Trying to link or monitor to a non-existing process or

nopr oc port.

A link or monitor to a remote process was broken
noconnecti on because a connection between the nodes could not be
established or was severed.

Trying to evaluate at hr ow outsideacat ch. Visthe

{nocat ch, V} thrown term.

A system limit has been reached. See Efficiency Guide

system|init for information about system limits.

Table 11.2: Exit Reasons

St ack is the stack of function calls being evaluated when the error occurred, given as a list of tuples
{ Modul e, Nane, Arity, Extral nf o} withthemost recent function call first. The most recent function call tuple
can in some cases be { Modul e, Nane, [Arg] , Ext r al nf o}.

6.12 Processes

6.12.1 Processes

Erlang is designed for massive concurrency. Erlang processes are lightweight (grow and shrink dynamically) with
small memory footprint, fast to create and terminate, and the scheduling overhead is low.

6.12.2 Process Creation
A processis created by calling spawn() :

spawn (Module, Name, Args) -> pid()
Module = Name = atom()
Args = [Argl,...,ArgN]
Argl = term()

spawn() createsanew process and returns the pid.

182 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.12 Processes

The new process starts executing in Modul e: Name(Ar g1, . .., ArgN) where the arguments are the elements of
the (possible empty) Ar gs argument list.

There exist anumber of different spawn BIFs:
e spawn/1,2,3,4

e spawn_link/1,2, 3,4

e spawn_nonitor/1,2,3,4

e spawn_opt/2,3,4,5

e spawn_request/1,2,3,4,5

6.12.3 Registered Processes

Besides addressing a process by using its pid, there are also BIFs for registering a process under a name. The name
must be an atom and is automatically unregistered if the process terminates:

BIF Description

Associates the name Nane, an atom, with the process

regi ster(Name, Pid) Pi d

Returns alist of namesthat have been registered using

regi stered() register/ 2.

Returns the pid registered under Narre, or undef i ned

wher ei s(Narre) if the nameis not registered.

Table 12.1: Name Registration BIFs

6.12.4 Process Aliases

When sending amessage to a process, the receiving process can beidentified by aPID, aregistered name, or aprocess
alias which is aterm of the type reference. The typical use case that process aliases were designed for is a request/
reply scenario. Using a process alias when sending the reply makesit possible for the receiver of the reply to prevent
the reply from reaching its message queue if the operation times out or if the connection between the processesis|ost.

A process dlias can be used as identifier of the receiver when sending a message using the send operator ! or send
BIFs such as er | ang: send/ 2. As long as the process dias is active, messages will be delivered the same way
as if the process identifier of the process that created the alias had been used. When the alias has been deactivated,
messages sent using the alias will be dropped before entering the message queue of the receiver. Note that messages
that at deactivation time already have entered the message queue will not be removed.

A process dlias is created either by calling one of the al i as/ 0, 1 BIFs or by creating an alias and a monitor
simultaneoudly. If thealiasis created together with amonitor, the samereference will be used both as monitor reference
and alias. Creating a monitor and an alias at the same time is done by passing the {al i as, _} option to the
noni tor/ 3 BIF. The{al i as, _} option can aso be passed when creating a monitor via spawn_opt (), or
spawn_r equest ().

A process alias can be deactivated by the process that created it by callingtheunal i as/ 1 BIF. Itisalso possibleto
automatically deactivate an alias on certain events. See the documentation of theal i as/ 1 BIF, and the{ al i as,
_} option of the moni t or / 3 BIF for more information about automatic deactivation of aliases.

It isnot possibleto:
e create an alias identifying another process than the caller.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 183

6.12 Processes

* deactivate an dlias unlessit identifies the caller.
e look upanalias.

» look up the processidentified by an alias.

e checkif analiasisactiveor not.

e checkif areferenceisan dlias.

These are all intentional design decisions relating to performance, scalability, and distribution transparency.

6.12.5 Process Termination
When a process terminates, it always terminates with an exit reason. The reason can be any term.

A process is said to terminate normally, if the exit reason is the atom nor mal . A process with no more code to
execute terminates normally.

A process terminates with an exit reason { Reason, St ack} when arun-time error occurs. See Exit Reasons.
A process can terminate itself by calling one of the following BIFs:

e exit(Reason)
* erlang:error(Reason)
e erlang: error(Reason, Args)

The process then terminates with reason Reason for exi t / 1 or { Reason, St ack} for the others.

A process can also beterminated if it receivesan exit signal with another exit reason than nor mal , see Error Handling.

6.12.6 Signals

All communication between Erlang processes and Erlang portsis done by sending and receiving asynchronous signals.
The most common signals are Erlang message signals. A message signal can be sent using the send operator ! . A
received message can be fetched from the message queue by the receiving process using ther ecei ve expression.

Synchronous communication can be broken down into multiple asynchronous signals. An example of such a
synchronous communication is a call to the er | ang: process_i nf o/ 2 BIF when the first argument does not
equal the process identifier of the calling process. The caller sends an asynchronous signal requesting information,
and then blocks waiting for the reply signal containing the requested information. When the request signal reachesits
destination, the destination process replies with the requested information.

Sending Signals

There are many signals that processes and ports use to communicate. The list below contains the most important
signals. In all the cases of request/reply signal pairs, the request signal is sent by the process calling the specific BIF,
and thereply signal is sent back to it when the requested operation has been performed.

nessage
Sent when using the send operator ! , or when calling one of theer | ang: send/ 2, 3 or
erl ang: send_nosuspend/ 2, 3 BIFs.
i nk
Sent when calling the link/1 BIF.
unl i nk
Sent when calling the unlink/1 BIF.
exit
Sent either when explicitly sending an exi t signal by calling the exit/2 BIF, or when alinked process
terminates. If the signal is sent due to alink, the signal is sent after all directly visible Erlang resources used by
the process have been released.
noni t or
Sent when calling one of the monitor/2,3 BIFs.

184 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.12 Processes

denoni t or
Sent when calling one of the demonitor/1,2 BIFs, or when a process monitoring another process terminates.
down
Sent by a monitored process or port that terminates. The signal is sent after al directly visible Erlang resources
used by the process or the port have been released.
change
Sent by the clock service on the local runtime system, when the time offset changes, to processes which have
monitored thet i me_of f set.
group_| eader
Sent when calling the group_leader/2 BIF.
spawn_r equest /spawn_repl y,open_port _request/open_port_reply
Sent dueto acall to one of thespawn/ 1, 2, 3, 4,spawn_l i nk/ 1, 2, 3, 4,
spawn_nonitor/1, 2,3, 4,spawn_opt/ 2, 3,4, 5,spawn_request/ 1, 2, 3,4,5,o0r
erl ang: open_port/ 2 BIFs. Therequest signal is sent to the spawn service which responds with the reply
signal.
alive_request/alive_reply
Sent dueto acall to theis process alive/l BIF.
gar bage_col | ect _request/garbage _col |l ect_reply,
check_process_code_request/check_process_code_reply,
process_i nfo_request/process_info_reply
Sent due to acall to one of the garbage_collect/1,2, erlang:check_process code/2,3, or process info/1,2 BIFs.
Note that if the request is directed towards the caller itself and it is a synchronous request, no signaling will be
performed and the caller will instead synchronously perform the request before returning from the BIF.
port_commrand, port_connect,port_cl ose
Sent by a processto a port on the local node using the send operator ! , or by calling one of the send()
BIFs. The signa is sent by passing aterm on the format { Omer, {comuand, Data}},{Oaner,
{connect, Pid}},or{Omer, close} asmessage.
port_conmmand_r equest /port _comand_reply,
port_connect _request/port_connect _reply,port_cl ose request/port_close_reply,
port_control _request/port_control reply,port_call _request/port_call _reply,
port i nfo_request/port_info_reply
Sent dueto acall tooneof theer | ang: port _comand/ 2, 3,erl ang: port_connect/ 2,
erl ang: port_cl ose/ 1,erlang: port_control/3,erl ang: port_call/3,
erl ang: port _i nfo/ 1, 2 BIFs. Therequest signal is sent to a port on the local node which responds with
thereply signal.
regi ster _name_request/regi ster_name_reply,
unr egi st er _nane_r equest /unregi ster_nane_reply,
wher ei s_nane_r equest /wherei s_name_reply
Sent dueto acall tooneof ther egi st er/ 2,unregi ster/ 1, orwher ei s/ 1 BIFs. Therequest signal is
sent to the name service, which responds with the reply signal.
timer_start_request/timer_start_reply,timer_cancel request/ti mer_cancel _reply
Sent dueto acal tooneof theer | ang: send_after/ 3, 4,erlang: start _timer/3,4,or
erl ang: cancel _tinmer/ 1, 2 BIFs. Therequest signal is sent to the timer service which responds with the
reply signal.
The clock service, the name service, the timer service, and the spawn service mentioned previously are services
provided by the runtime system. Each of these services consists of multiple independently executing entities. Such a
service can be viewed as agroup of processes, and could actually beimplemented like that. Since each service consists
of multiple independently executing entities, the order between multiple signals sent from one service to one process
isnot preserved. Note that this does not violate the signal ordering guarantee of the language.

Therealization of the signals described above may change both at runtime and due to changesin implementation. Y ou
may be able to detect such changes using r ecei ve tracing or by inspecting message queues. However, these are

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 185

6.12 Processes

internal implementation details of the runtime system that you should not rely on. As an example, many of the reply
signals above are ordinary message signals. When the operation is synchronous, the reply signals do not have to be
message signals. The current implementation takes advantage of this and, depending on the state of the system, use
alternative ways of delivering the reply signals. The implementation of these reply signals may also, at any time, be
changed to not use message signals where it previously did.

Receiving Signals

Signals are received asynchronously and automatically. There is nothing a process must do to handle the reception of
signals, or can do to prevent it. In particular, signal reception is not tied to the execution of ar ecei ve expression,
but can happen anywhere in the execution flow of a process.

When asignal isreceived by a process, some kind of action istaken. The specific action taken depends on the signal
type, contents of the signal, and the state of the receiving process. Actions taken for the most common signals:

nessage
If the message signal was sent using a process alias that is no longer active, the message signal will be dropped;
otherwise, if the aiasis still active or the message signal was sent by other means, the message is added to the
end of the message queue. When the message has been added to the message queue, the receiving process can
fetch the message from the message queue using ther ecei ve expression.

l'i nk,unlink
Very simplified it can be viewed as updating process local information about the link. A detailed description of
the link protocol can be found in the Distribution Protocol chapter of the ERTS User's Guide.

exi t
Set the receiver in an exiting state, drop the signal, or convert the signal into a message and add it to the end
of the message queue. If the receiver is set in an exiting state, no more Erlang code will be executed and the
processis scheduled for termination. The section Receiving Exit Sgnals below gives more details on the action
taken when an exi t signal isreceived.

noni t or, dermoni t or
Update process local information about the monitor.

down, change
Convert into a message if the corresponding monitor is still active; otherwise, drop the signal. If the signal is
converted into amessage, it is also added to the end of the message queue.

group_| eader
Change the group leader of the process.

spawn_reply
Convert into a message, or drop the signal depending on the reply and how the spawn_r equest signa was
configured. If the signal is converted into amessage it is also added to the end of the message queue. For more
information seethe spawn_r equest () BIF.

al i ve_request
Schedule execution of theis alive test. If the processisin an exiting state, the is alive test will not be executed
until after al directly visible Erlang resources used by the process have beenreleased. Theal i ve_reply
will be sent after the is alive test has executed.

process_i nfo_request,garbage col |l ect _request,check process_code_request
Schedule execution of the requested operation. The reply signal will be sent when the operation has been
executed.

Note that some actions taken when asignal is received involves scheduling further actionswhich will result in areply
signal when these scheduled actions have completed. This implies that the reply signals may be sent in a different
order than the order of the incoming signalsthat triggered these operations. This does, however, not violate the signal
ordering guarantee of the language.

The order of messages in the message queue of a process reflects the order in which the signals corresponding to
the messages has been received since all signals that add messages to the message queue add them at the end of the

186 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.12 Processes

message queue. Messages corresponding to signals from the same sender are also ordered in the same order as the
signals were sent due to the signal ordering guarantee of the language.

Directly Visible Erlang Resources

As described above, exi t signals due to links, down signals, and reply signals from an exiting process due to
al i ve_request sarenot sent until al directly visible Erlang resources held by the terminating process have been
released. With directly visible Erlang resources we here mean all resources made available by the language excluding
resources held by heap data, dirty native code execution and the processidentifier of the terminating process. Examples
of directly visible Erlang resources are registered name and ETS tables.

The Excluded Resources

The process identifier of the process cannot be released for reuse until everything regarding the process has been
released.

A process executing dirty native code in a NIF when it receives an exit signal will be set into an exiting state even
if it is still executing dirty native code. Directly visible Erlang resources will be released, but the runtime system
cannot force the native code to stop executing. The runtime system tries to prevent the execution of the dirty native
code from effecting other processes by, for example, disabling functionality suchaseni f _send() when used from
aterminated process, but if the NIF is not well behaved it can still effect other processes. A well behaved dirty NIF
should test if the processit is executing in has exited, and if so stop executing.

In the general case, the heap of a process cannot be removed before all signals that it needs to send have been sent.
Resources held by heap data are the memory blocks containing the heap, but also include things referred to from the
heap such as off heap binaries, and resources held via NIF resource objects on the heap.

Delivery of Signals

The amount of time that passes between the time a signal is sent and the arrival of the signal at the destination is
unspecified but positive. If the receiver has terminated, the signal does not arrive, but it can trigger another signal.
For example, al i nk signal sent to a non-existing process triggers an exi t signal, which is sent back to where the
| i nk signal originated from. When communicating over the distribution, signals can belost if the distribution channel
goes down.

The only signal ordering guarantee given is the following: if an entity sends multiple signals to the same destination
entity, the order is preserved; that is, if Asendsasigna S1 to B, and later sends signal S2 to B, S1 is guaranteed not
to arrive after S2. Note that S1 may, or may not have been lost.

Irregularities
Synchronous Error Checking

Some functionality that send signals have synchronous error checking when sending locally on a node and fail
if the receiver is not present at the time when the signal is sent:

e« Thesendoperator ! , erl ang: send/ 2, 3, BlFsand er | ang: send_nosuspend/ 2, 3 BIFswhen
the receiver isidentified by aname that is expected to be registered locally.

e erlang:link/1

 erlang:group_| eader/2

Unexpected Behaviours of Exit Signals

When a process sends an exit signal with exit reason nor mal to itself by calling er | ang: exi t (sel f(),
nor mal) itwill beterminated when theexi t signal isreceived. In all other cases when an exit signal with exit
reason nor mal isreceived, it isdropped.

When an exi t signal with exit reason ki | | isreceived, the action taken is different depending on whether the
signal was sent due to a linked process terminating, or the signal was explicitly sent using the exi t / 2 BIF.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 187

6.12 Processes

When sent using the exi t / 2 BIF, the signal cannot be trapped, while it can be trapped if the signal was sent
dueto alink.

Blocking Signaling Over Distribution

When sending asignal over adistribution channel, the sending process may be suspended even though the signal
is supposed to be sent asynchronoudly. This is due to the built in flow control over the channel that has been
present more or lessfor ever. When the size of the output buffer for the channel reach the distribution buffer busy
limit, processes sending on the channel will be suspended until the size of the buffer shrinks below the limit. The
sizeof thelimit can beinspected by callinger | ang: syst em i nf o(di st _buf busy_li m t).Sincethis
functionality has been present for so long, it is not possible to remove it, but it is possible to increase the limit
to a point where it more or less never is reached using the er | command line argument +zdbbl . Note that if
you do raise the limit like this, you need to take care of flow control yourself to ensure that you do not get into
asituation with excessive memory usage.

The irregularities mentioned above cannot be fixed as they have been part of Erlang too long and it would break a
lot of existing code.

6.12.7 Links

Two processes can belinked to each other. Also aprocess and aport that reside on the same node can be linked to each
other. A link between two processes can be created if one of them callsthe | i nk/ 1 BIF with the process identifier
of the other process as argument. Links can also be created using one the following spawn BIFs spawn_I i nk() ,
spawn_opt (), orspawn_r equest () . The spawn operation and the link operation will be performed atomically,
in these cases.

If one of the participants of alink terminates, it will send an exit signal to the other participant. The exit signal will
contain the exit reason of the terminated participant.

A link can be removed by calling theunl i nk/ 1 BIF.

Links are bidirectional and there can only be one link between two processes. Repeated callsto | i nk() have no
effect. Either one of the involved processes may create or remove alink.

Links are used to monitor the behavior of other processes, see Error Handling.

6.12.8 Error Handling

Erlang has a built-in feature for error handling between processes. Terminating processes emit exit signals to all
linked processes, which can terminate as well or handle the exit in some way. This feature can be used to build
hierarchical program structures where some processes are supervising other processes, for example, restarting them
if they terminate abnormally.

See OTP Design Principles for more information about OTP supervision trees, which use this feature.

Sending Exit Signals

When aprocess or port terminatesit will send exit signalsto all processes and portsthat it islinked to. The exit signal
will contain the following information:

Sender identifier

The process or port identifier of the process or port that terminated.
Receiver identifier

The process or port identifier of the process or port which the exit signal is sent to.
Thel i nk flag

Thisflag will be set indicating that the exit signal was sent due to alink.

188 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.12 Processes

Exit reason

The exit reason of the process or port that terminated or the atom:

e noproc in case no process or port was found when setting up a link in a preceeding cal to the
i nk(Pi dOrPort) BIF. The process or port identified as sender of the exit signal will equal the
Pi dOr Port argument passedtol i nk/ 1.

e noconnecti on in case the linked processes resides on different nodes and the connection between the
nodes was lost or could not be established. The process or port identified as sender of the exit signal might
in this case still be alive.

Exit signals can al so be sent explicitly by calingtheexi t (Pi dOr Port, Reason) BIF. Theexit signal issentto
theprocessor port identified by thePi dOr Por t argument. The exit signal sent will contain thefollowinginformation:

Sender identifier

The process identifier of the processthat called exi t/ 2.

Receiver identifier

The process or port identifier of the process or port which the exit signal is sent to.

Thel i nk flag

This flag will not be set, indicating that this exit signal was not sent dueto alink.

Exit reason

The term passed as Reason inthecall to exi t/ 2. If Reason istheatom ki | | , the receiver cannot trap the
exit signal and will unconditionally terminate when it receives the signal.

Receiving Exit Signals

What happens when a process receives an exit signal depends on:

The trap exit state of the receiver at the time when the exit signal is received.
The exit reason of the exit signal.
The sender of the exit signal.

Thestateof thel i nk flagof theexitsignal. If thel i nk flagisset, theexit signal was sent dueto alink; otherwise,
the exit signal was sent by acall totheexi t/ 2 BIF.

If thel i nk flag is set, what happens also depends on whether the link is till active or not when the exit signal
isreceived.

Based on the above states, the following will happen when an exit signal is received by a process:

The exit signal is silently dropped if:

» theli nk flag of the exit signal is set and the corresponding link has been deactivated.

« theexit reason of the exit signal isthe atom nor nal , the receiver is not trapping exits, and the receiver and
sender are not the same process.

The receiving processis terminated if:
« thel i nk flag of theexit signal isnot set, and the exit reason of theexit signal istheatomKki | | . Thereceiving
process will terminate with the atom ki | | ed as exit reason.

« thereceiver isnot trapping exits, and the exit reason is something other than the atom nor el . Also, if the
I i nk flag of the exit signal is set, the link also needs to be active otherwise the exit signal will be dropped.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 189

6.13 Distributed Erlang

The exit reason of the receiving process will equal the exit reason of the exit signal. Note that if the |l i nk
flagis set, an exit reason of ki | | will not be convertedtoki | | ed.

« the exit reason of the exit signal is the atom nor mal and the sender of the exit signal is the same process
as the receiver. The |l i nk flag cannot be set in this case. The exit reason of the receiving process will be
theatom nor nal .

* Theexit signa is converted to a message signal and added to the end of the message queue of the receiver, if the
receiver istrapping exits, thel i nk flag of the exit signd is:

e not set, and the exit reason of the signal is not theatom ki | | .

» sat, and the corresponding link is active. Note that an exit reason of ki | | will not terminate the processin
this case and it will not be convertedtoki | | ed.

The converted message will beon the form {' EXI T', Sender| D, Reason} where Reason equals the
exit reason of the exit signal and Sender | Distheidentifier of the process or port that sent the exit signal.

6.12.9 Monitors

An alternative to links are monitors. A process Pi d1 can create a monitor for Pi d2 by caling the BIF
er |l ang: noni t or (process, Pi d2). Thefunction returns areference Ref .

If Pi d2 terminates with exit reason Reason, a'DOWN' messageis sent to Pi d1:

{'DOWN', Ref, process, Pid2, Reason}

If Pi d2 doesnot exist, the ' DOWN' message is sent immediately with Reason set to nopr oc.

Monitors are unidirectional. Repeated callsto er | ang: noni t or (process, Pi d) creates severa independent
monitors, and each one sends a'DOWN' message when Pi d terminates.

A monitor can be removed by calling er | ang: denoni t or (Ref) .
Monitors can be created for processes with registered names, also at other nodes.

6.12.10 Process Dictionary

Each process has its own process dictionary, accessed by calling the following BIFs:

put(Key, Value)
get(Key)

get()

get keys(Value)
erase(Key)
erase()

6.13 Distributed Erlang
6.13.1 Distributed Erlang System

A distributed Erlang system consists of a number of Erlang runtime systems communicating with each other. Each
such runtime system is called a node. Message passing between processes at different nodes, as well as links and
monitors, are transparent when pids are used. Registered names, however, arelocal to each node. This means that the
node must be specified as well when sending messages, and so on, using registered names.

Thedistribution mechanismisimplemented using TCP/I P sockets. How to implement an alternative carrier isdescribed
in the ERTS User's Guide.

190 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.13 Distributed Erlang

Starting adistributed node without also specifying - pr ot o_di st i net _t | s will exposethenodeto attacksthat
may give the attacker complete access to the node and in extension the cluster. When using un-secure distributed
nodes, make sure that the network is configured to keep potential attackers out. See the Using SSL for Erlang
Distribution User's Guide for details on how to setup a secure distributed node.

6.13.2 Nodes

A nodeis an executing Erlang runtime system that has been given a name, using the command-lineflag - narre (long
names) or - snarmne (short names).

Theformat of the node nameisan atom nane@ost . nane isthenamegiven by theuser. host isthefull host name
if long names are used, or thefirst part of the host nameif short namesare used. node() returnsthe name of the node.

Example:

% erl -name dilbert
(dilbert@uab.ericsson.se)1> node().
'dilbert@uab.ericsson.se'

% erl -sname dilbert

(dilbert@uab)1> node().
dilbert@uab

| A node with along node name cannot communicate with a node with a short node name. |

6.13.3 Node Connections

The nodes in a distributed Erlang system are loosely connected. The first time the name of another node is used,
for example, if spawn(Node, M F, A) or net _adm pi ng(Node) is called, a connection attempt to that node
is made.

Connections are by default transitive. If anode A connectsto node B, and node B has a connection to node C, then node
A also tries to connect to node C. This feature can be turned off by using the command-line flag - connect _al |
f al se, seethe erl(1) manual pagein ERTS.

If a node goes down, all connections to that node are removed. Calling er | ang: di sconnect _node(Node)
forces disconnection of anode.

Thelist of (visible) nodes currently connected to isreturned by nodes() .

6.13.4 epmd

The Erlang Port Mapper Daemon epmd is automatically started at every host where an Erlang node is started. It is
responsible for mapping the symbolic node hames to machine addresses. See the epmd(1) manual page in ERTS.

6.13.5 Hidden Nodes

In adistributed Erlang system, it is sometimes useful to connect to a node without also connecting to all other nodes.
An example is some kind of O&M functionality used to inspect the status of a system, without disturbing it. For this
purpose, a hidden node can be used.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 191

6.13 Distributed Erlang

A hidden node is a node started with the command-line flag - hi dden. Connections between hidden nodes and other
nodesare not transitive, they must be set up explicitly. Also, hidden nodes does not show up inthelist of nodesreturned
by nodes() . Instead, nodes(hi dden) or nodes(connect ed) must be used. This means, for example, that
the hidden node is not added to the set of nodes that gl obal iskeeping track of.

This feature was added in Erlang 5.0/0TP R7.

6.13.6 C Nodes

A C node is a C program written to act as a hidden node in a distributed Erlang system. The library Erl_Interface
contains functions for this purpose. For more information about C nodes, see the Erl_Interface application and
Interoperability Tutorial..

6.13.7 Security

"Security" here does not mean cryptographically secure, but rather security against accidental misuse, such as
preventing a node from connecting to a cluster with which it is not intended to communicate.

Furthermore, the communication between nodes is per default in clear text. If you need strong security, please see
Using TLSfor Erlang Distribution in the SSL application’'s User's Guide.

Also, the default random cookie mentioned in the following text is not very unpredictable. A better one can
be generated using primitives in the cr ypt o module, though this still does not make the inital handshake
cryptographically secure. And inter-node communication is still in clear text.

Authentication determines which nodes are allowed to communicate with each other. In anetwork of different Erlang
nodes, it is built into the system at the lowest possible level. All nodes use a magic cookie, which is an Erlang atom,
when connecting another node.

During the connection setup, after node hames have been exchanged, the magic cookies the nodes present to each
other are compared. If they do not match, the connection is rejected. The cookies themselves are never transferred,
instead they are compared using hashed challenges, although not in a cryptographically secure manner.

At start-up, a node has a random atom assigned as its default magic cookie and the cookie of other nodes is assumed
to be nocooki e. The first action of the Erlang network authentication server (aut h) is then to read a file named
$HOME/ . er | ang. cooki e. If the file does not exist, it is created. The UNIX permissions mode of the file is set
to octal 400 (read-only by user) and its content is a random string. An atom Cooki e is created from the contents of
the file and the cookie of the local nodeisset tothisusing er | ang: set _cooki e(Cooki e) . This setsthe default
cookie that the local node will use for all other nodes.

Thus, groups of userswith identical cookie files get Erlang hodes that can communicate freely since they use the same
magic cookie. Users who want to run nodes where the cookie files are on different file systems must make certain
that their cookie files areidentical.

For anode Node1 using magic cookie Cooki e to be ableto connect to, and to accept a connection from, another node
Node? that usesadifferent cookieDi f f Cooki e, thefunctioner | ang: set _cooki e(Node2, Diff Cooki e)
must first be called at Nodel. Distributed systems with multiple home directories (differing cookie files) can be
handled in thisway.

192 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.13 Distributed Erlang

With this setup Nodel and Node2 agree on which cookie to use: Nodel uses its explicitly configured
Di f f Cooki e for Node2, and Node?2 usesits default cookie Di f f Cooki e.

You can aso use a Di ff Cooki e that neither Node1 nor Node?2 has as its default cookie, if you also call
erl ang: set _cooki e(Nodel, Diff Cookie) inNode2 before establishing connection

Because node names are exchanged during connection setup before cookies are selected, connection setup works
regardless of which node that initiates it.

Note that to configure Nodel to use Node?2's default cookie when communicating with Node2, and vice versa
results in a broken configuration (if the cookies are different) because then both nodes use the other node's
(differing) cookie.

The default when a connection is established between two nodes, isto immediately connect all other visible nodes as
well. Thisway, there is always a fully connected network. If there are nodes with different cookies, this method can
be inappropriate (since it may not be feasible to configure different cookies for al possible nodes) and the command-
lineflag- connect _al | f al se must be set, see the erl(1) manual pagein ERTS.

The magic cookie of the local node can be retrieved by caling er | ang: get _cooki e() .

6.13.8 Distribution BIFs

Some useful BIFs for distributed programming (for more information, see the erlang(3) manua pagein ERTS:

BIF Description

er| ang: di sconnect _node(Node) Forces the disconnection of a node.

er| ang: get _cooki e() Returns the magic cookie of the current node.
erl ang: get _cooki e(Node) Returns the magic cookie for node Node.

Returnst r ue if the runtime system is anode and can

is_alive() connect to other nodes, f al se otherwise.

Monitors the status of Node. A message{ nodedown,

moni tor_node(Node, true|false) Node} isreceived if the connectionto it islost.

Returns the name of the current node. Allowed in

node() guards.
Returns the node where Ar g, apid, reference, or port, is
node(Ar g) located. %P P
Returns alist of all visible nodes this node is connected
nodes()

to.

Depending on Ar g, this function can return alist
nodes(Ar Q) not only of visible nodes, but aso hidden nodes and
previously known nodes, and so on.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 193

6.13 Distributed Erlang

Sets the magic cookie, Cooki e to use when connecting
erl ang: set _cooki e(Cooki e) all nodes that have no explicit cookie set with
erl ang: set _cooki e/ 2.

Sets the magic cookie used when connecting Node.
If Node isthe current node, Cooki e isused when
connecting all nodes that have no explicit cookie set
with this function.

erl ang: set _cooki e(Node, Cooki e)

spawn[_| i nk| _opt] (Node, Fun) Creates a process at a remote node.

spawn|[_| i nk| opt] (Node, Modul e,

Funct i onName, Args) Creates a process at aremote node.

Table 13.1: Distribution BIFs

6.13.9 Distribution Command-Line Flags

Examples of command-line flags used for distributed programming (for more information, see the erl(1) manual page
in ERTS:

Command-Line Flag Description

-connect _all false Only explicit connection set-ups are used.

- hi dden Makes a node into a hidden node.

- name Nare rI\]/Iazrank:(:lrunti me system into a node, using long node
-set cooki e Cooki e Sameascalinger| ang: set _cooki e(Cooki e).

Sameascalinger | ang: set _cooki e(Node,

-set cooki e Node Cooki e Cooki €) .

Makes a runtime system into a node, using short node
-snane Nane

names.
Table 13.2: Distribution Command-Line Flags

6.13.10 Distribution Modules

Examples of modules useful for distributed programming:

In the Kernel application:

Module Description

gl obal A global name registration facility.

gl obal _group Grouping nodes to global name registration groups.

194 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.14 Compilation and Code Loading

net _adm Various Erlang net administration routines.

net _ker nel Erlang networking kernel.

Table 13.3: Kernel Modules Useful For Distribution.

Inthe STDLIB application:

Module Description

sl ave Start and control of slave nodes.

Table 13.4: STDLIB Modules Useful For Distribution.

6.14 Compilation and Code Loading

How codeis compiled and loaded is not alanguage issue, but is system-dependent. This section describes compilation
and code loading in Erlang/OTP with references to relevant parts of the documentation.

6.14.1 Compilation

Erlang programs must be compiled to object code. The compiler can generate anew file that contains the object code.
The current abstract machine, which runs the object code, is called BEAM, therefore the object files get the suffix
. beam The compiler can also generate a binary which can be loaded directly.

The compiler islocated in the module conpi | e (see the compile(3) manual page in Compiler).

compile: file(Module)
compile:file(Module, Options)

The Erlang shell understands the command ¢ (Modul e) which both compiles and loads Mbdul e.

There is also a module make, which provides a set of functions similar to the UNIX type Make functions, see the
make(3) manual pagein Toals.

The compiler can aso be accessed from the OS prompt, see the erl(1) manual pagein ERTS.

erl -compile Modulel...ModuleN
erl -make

[
“©
[

“©

The er | ¢ program provides an even better way to compile modules from the shell, see the erlc(1) manual pagein
ERTS. It understands a number of flags that can be used to define macros, add search paths for include files, and more.

% erlc <flags> Filel.erl...FileN.erl

6.14.2 Code Loading

The object code must be loaded into the Erlang runtime system. Thisis handled by the code server, see the code(3)
manual pagein Kernel.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 195

6.14 Compilation and Code Loading

The code server loads code according to a code loading strategy, which is either inter active (default) or embedded.
In interactive mode, code is searched for in a code path and loaded when first referenced. In embedded mode, code
isloaded at start-up according to aboot script. Thisis described in System Principles .

6.14.3 Code Replacement
Erlang supports change of code in arunning system. Code replacement is done on module level.

The code of amodule can exist in two variantsin asystem: current and old. When amodule isloaded into the system
for the first time, the code becomes 'current'. If then a new instance of the module is loaded, the code of the previous
instance becomes 'old' and the new instance becomes 'current'.

Both old and current code is valid, and can be evaluated concurrently. Fully qualified function calls always refer to
current code. Old code can still be evaluated because of processes lingering in the old code.

If athird instance of the moduleisloaded, the code server removes (purges) the old code and any processes lingering
in it isterminated. Then the third instance becomes 'current’ and the previously current code becomes 'old'.

To change from old code to current code, a process must make afully qualified function call.

Example:

-module(m).
-export([loop/0]).

loop() ->
receive
code switch ->
m:loop();
Msg ->

iéép()
end.

To make the process change code, send the message code_swi t ch to it. The process then makes a fully qualified
cal tom | oop() and changesto current code. Noticethat m | oop/ 0 must be exported.

For code replacement of funs to work, use the syntax f un Modul e: Funct i onName/ Arity.

6.14.4 Running a Function When a Module is Loaded
The-on_| oad() directive namesafunction that isto be run automatically when amoduleis loaded.
Its syntax is as follows:;

-on_load(Name/0) .

It is not necessary to export the function. It is called in a freshly spawned process (which terminates as soon as the
function returns).

The function must return ok if the module is to become the new current code for the module and become callable.

Returning any other value or generating an exception causes the new code to be unloaded. If the return value is not
an atom, awarning error report is sent to the error logger.

If there aready is current code for the module, that code will remain current and can be called until the on_I| oad
function hasreturned. If theon_| oad function fails, the current code (if any) will remain current. If thereisno current
code for amodule, any process that makes an external call to the module before the on_| oad function has finished
will be suspended until the on_| oad function have finished.

196 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.15 Ports and Port Drivers

Before OTP 19, if theon_I| oad function failed, any previously current code would become old, essentially leaving
the system without any working and reachabl e instance of the module. That problem hasbeen eliminated in OTP 19.

In embedded mode, first all modules are loaded. Then all on_I| oad functions are called. The system is terminated
unless all of theon_I oad functions return ok.

Example:

-module(m).
-on_load(load my nifs/0).

load my nifs() ->
NifPath = ..., %Set up the path to the NIF library.
Info = ..., %Initialize the Info term
erlang:load nif(NifPath, Info).

If thecall toer | ang: | oad_ni f/ 2 fails, the module is unloaded and awarning report is sent to the error loader.

6.15 Ports and Port Drivers

Examples of how to use ports and port drivers are provided in Interoperability Tutorial. For information about the
BIFs mentioned, see the erlang(3) manual pagein ERTS.

6.15.1 Ports

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. They
provide a byte-oriented interface to an external program. When a port has been created, Erlang can communicate with
it by sending and receiving lists of bytes, including binaries.

The Erlang process creating a port is said to be the port owner, or the connected process of the port. All
communication to and from the port must go through the port owner. If the port owner terminates, so does the port
(and the external program, if it iswritten correctly).

The external program resides in another OS process. By defaullt, it reads from standard input (file descriptor 0) and
writes to standard output (file descriptor 1). The external program is to terminate when the port is closed.

6.15.2 Port Drivers

Itispossibletowrite adriver in C according to certain principlesand dynamically link it to the Erlang runtime system.
The linked-in driver looks like a port from the Erlang programmer's point of view and is called aport driver.

An erroneous port driver causes the entire Erlang runtime system to leak memory, hang or crash. |

For information about port drivers, seethe erl_driver(4) manual pagein ERTS, driver_entry(1) manual pagein ERTS,
and erl_ddll(3) manual pagein Kernel.

6.15.3 Port BIFs
To create a port:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 197

6.15 Ports and Port Drivers

Returns a port identifier Por t asthe result of opening a
new Erlang port. Messages can be sent to, and received
open_port (PortName, PortSettings from, aport identifier, just like apid. Port identifiers
can also belinkedtousing | i nk/ 1, or registered under
anameusingr egi ster/ 2.

Table 15.1: Port Creation BIF

Por t Name isusually atuple{ spawn, Comrand} , where the string Command isthe name of the external program.
The external program runs outside the Erlang workspace, unless a port driver with the name Commrand is found. If
Conmand isfound, that driver is started.

Port Set ti ngs isalist of settings (options) for the port. The list typically contains at least atuple { packet , N},
which specifies that data sent between the port and the external program are preceded by an N-byte length indicator.
Validvaluesfor N arel, 2, or 4. If binariesareto be used instead of lists of bytes, the option bi nar y must beincluded.

The port owner Pi d can communicate with the port Por t by sending and receiving messages. (In fact, any process
can send the messages to the port, but the port owner must be identified in the message).

As of Erlang/OTP R16, messages sent to ports are delivered truly asynchronously. The underlying implementation
previously delivered messages to ports synchronously. Message passing has however always been documented as an
asynchronous operation. Hence, this is not to be an issue for an Erlang program communicating with ports, unless
fal se assumptions about ports have been made.

In the following tables of examples, Dat a must bean 1/Olist. An1/Olistisabinary or a(possibly deep) list of binaries
or integersin the range 0..255:

M essage Description

{Pi d, {command, Dat a}} Sends Dat a to the port.

Closes the port. Unless the port is already closed, the
{Pi d, cl ose} port replieswith{ Por t , cl osed} when al buffers
have been flushed and the port really closes.

Sets the port owner of Por t to NewPi d. Unless

the port is aready closed, the port replies

{Pi d, {connect, NewPi d}} with{ Por t , connect ed} totheold port owner. Note
that the old port owner is till linked to the port, but the
new port owner is not.

Table 15.2: Messages Sent To a Port

M essage Description

{Port,{data, Data}} Dat a isreceived from the external program.
{Port, cl osed} ReplytoPort ! {Pid, cl ose}.

{Port, connect ed} ReplytoPort ! {Pid, {connect, NewPi d}}.

198 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.15 Ports and Port Drivers

{"EXIT, Port, Reason} If the port has terminated for some reason.

Table 15.3: Messages Received From a Port

Instead of sending and receiving messages, there are also a number of BIFsthat can be used:

Port BIF Description
port command(Port, Dat a) Sends Dat a to the port.
port _cl ose(Port) Closes the port.

Sets the port owner of Por t to NewPi d. The old
port _connect (Port, NewPi d) port owner Pi d stays linked to the port and must call
unl i nk(Port) if thisisnot desired.

erlang: port _info(Port,Item Returnsinformation as specified by | t em

erl ang: ports() Returns alist of all ports on the current node.

Table 15.4: Port BIFs

Some additional BIFsthat apply to port drivers:. port _control /3 anderl ang: port_cal | /3.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 199

7.1 Records

7 Programming Examples

This section contains examples on using records, funs, list comprehensions, and the bit syntax.

7.1 Records
7.1.1 Records and Tuples

The main advantage of using records rather than tuplesisthat fieldsin arecord are accessed by name, whereas fields
in atuple are accessed by position. To illustrate these differences, suppose that you want to represent a person with
thetuple{ Nane, Address, Phone}.

To write functions that manipulate this data, remember the following:

» TheNane field isthefirst element of the tuple.
e TheAddr ess field is the second element.
e ThePhone field isthe third element.

For example, to extract data from a variable P that contains such a tuple, you can write the following code and then
use pattern matching to extract the relevant fields:

Name = element(1l, P),
Address = element(2, P),

Such codeisdifficult to read and understand, and errors occur if the numbering of the elementsin the tupleiswrong. If
the data representation of thefieldsis changed, by re-ordering, adding, or removing fields, al referencesto the person
tuple must be checked and possibly modified.

Records allow references to the fields by name, instead of by position. In the following example, a record instead of
atupleis used to store the data:

-record(person, {name, phone, address}).

This enables references to the fields of the record by name. For example, if P isavariable whose valueisaper son
record, the following code access the name and address fields of the records:

Name = P#person.name,
Address = P#person.address,

Internally, records are represented using tagged tuples:

{person, Name, Phone, Address}

7.1.2 Defining a Record

This following definition of aper son isused in several examples in this section. Three fields are included, nane,
phone, and addr ess. The default values for name and phone is"" and [], respectively. The default value for
addr ess istheatom undef i ned, since no default value is supplied for thisfield:

200 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.1 Records

-record(person, {name = , phone = [], address}).

The record must be defined in the shell to enable use of the record syntax in the examples:

> rd(person, {name = "", phone = [], address}).
person

Thisisbecause record definitions are only available at compile time, not at runtime. For details on recordsin the shell,
see the shell(3) manual pagein STDLIB.

7.1.3 Creating a Record

A new per son record is created as follows:

> #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

Astheaddr ess field was omitted, its default value is used.

From Erlang 5.1/OTP R8B, a vaue to al fields in a record can be set with the specia field . means "al fields
not explicitly specified".

Example:
> #person{name = "Jakob", ="' '}.
#person{name = "Jakob",phone = ' ',address = ' '}

It is primarily intended to be used in et s: mat ch/ 2 and rmesi a: mat ch_obj ect / 3, to set record fields to the
atom' ' .(Thisisawildcardinet s: mat ch/ 2.)

7.1.4 Accessing a Record Field

The following example shows how to access arecord field:

> P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
> P#person.name.

"Joe"

7.1.5 Updating a Record

The following example shows how to update a record:

> P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
#person{name = "Joe",phone = [1,2,3],address = "A street"}

> P2 = Pl#person{name="Robert"}.

#person{name = "Robert",phone = [1,2,3],address = "A street"}

7.1.6 Type Testing

The following example shows that the guard succeeds if P is record of type per son:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 201

7.1 Records

foo(P) when is record(P, person) -> a person;
foo(_) -> not_a person.

7.1.7 Pattern Matching

Matching can be used in combination with records, as shown in the following example:

> P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.

#person{name = "Joe",phone = [0,0,7],address = "A street"}
> #person{name = Name} = P3, Name.
"Joe"

Thefollowing function takesalist of per son records and searches for the phone number of aperson with a particular
name:

find phone([#person{name=Name, phone=Phone} | 1, Name) ->
{found, Phone};

find phone([| T1, Name) ->
find phone(T, Name);

find phone([], Name) ->
not found.

Thefields referred to in the pattern can be given in any order.

7.1.8 Nested Records

The value of afield in arecord can be an instance of arecord. Retrieval of nested data can be done stepwise, or in
asingle step, as shown in the following example:

-record(name, {first = "Robert", last = "Ericsson"}).

-record(person, {name = #name{}, phone}).

demo() ->
P = #person{name= #name{first="Robert",last="Virding"}, phone=123},

First = (P#person.name)#name.first.

Here, deno() evaluatesto” Robert ™.

7.1.9 A Longer Example

Comments are embedded in the following example:

o°

% File: person.hrl

Data Type: person

where:
name: A string (default is undefined).
age: An integer (default is undefined).

phone: A list of integers (default is []).

dict: A dictionary containing various information
about the person.
A {Key, Value} list (default is the empty list).

% 0° o° o° o° o o° o° o° o°

record(person, {name, age, phone = [], dict = [1}).

1 0P 0P AP AP d° P od° d° o° o°

202 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 Funs

-module(person).
-include("person.hrl").
-compile(export all). % For test purposes only.

This creates an instance of a person.
Note: The phone number is not supplied so the
default value [] will be used.

o o of
o o o°

make hacker without phone(Name, Age) ->
#person{name = Name, age = Age,
dict = [{computer knowledge, excellent},
{drinks, coke}]}.

%% This demonstrates matching in arguments

print(#person{name = Name, age = Age,
phone = Phone, dict = Dict}) ->
io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
"Dictionary: ~w.~n", [Name, Age, Phone, Dict]).

%% Demonstrates type testing, selector, updating.

birthday(P) when is record(P, person) ->
P#person{age = P#person.age + 1}.

register two hackers() ->
Hackerl = make hacker without phone("Joe", 29),
OldHacker = birthday(Hackerl),
% The central register server should have
% an interface function for this.
central register server ! {register person, Hackerl},
central register server ! {register person,
OldHacker#person{name = "Robert",
phone = [0,8,3,2,4,5,3,11}}.

7.2 Funs
7.2.1 map

The following function, doubl e, doubles every element in alist:

double(

[H|T]) -> [2*H|double(T)];
double([

Hl
o > 1.

Hence, the argument entered as input is doubled as follows:
> double([1,2,3,4]).
[2,4,6,8]
Thefollowing function, add_one, adds oneto every element in alist:

|T1) -> [H+1l|add one(T)];
) -> [1].

The functions doubl e and add_one have a similar structure. This can be used by writing a function map that
expresses this similarity:

add one([H
add one([]

map(F, [H|T1) -> [F(H)|map(F, T)1;
map(F, [1) -> [1.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 203

7.2 Funs

The functionsdoubl e and add_one can now be expressed in terms of map asfollows:

double(L) -> map(fun(X) -> 2*X end, L).
add one(L) -> map(fun(X) -> 1 + X end, L).

map(F, List) isafunction that takes afunction F and alist L as arguments and returns a new list, obtained by
applying F to each of the elementsin L.

The process of abstracting out the common features of a number of different programs is called procedural
abstraction. Procedural abstraction can be used to write several different functions that have a similar structure, but
differ in some minor detail. Thisis done as follows:

* Step 1. Write one function that represents the common features of these functions.
e Step 2. Parameterize the difference in terms of functions that are passed as arguments to the common function.

7.2.2 foreach

This section illustrates procedural abstraction. Initialy, the following two examples are written as conventional
functions.

This function prints all elements of alist onto a stream:

print list(Stream, [H|T]) ->
io:format(Stream, "~p~n", [H]),
print list(Stream, T);
print_list(Stream, []) ->
true.

This function broadcasts a message to alist of processes:

broadcast(Msg, [Pid|Pids]) ->
Pid ! Msg,
broadcast(Msg, Pids);
broadcast(, []1) ->
true.

These two functions have asimilar structure. They both iterate over alist and do something to each element in thelist.
The "something" is passed on as an extra argument to the function that does this.

Thefunction f or each expresses this similarity:
foreach(F, [H|T]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.
Using the function f or each, thefunctionpri nt | i st becomes:
foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)
Using the function f or each, the function br oadcast becomes:
foreach(fun(Pid) -> Pid ! M end, L)

f or each is evaluated for its side-effect and not its value. f or each(Fun , L) cals Fun(X) for each element
Xin L and the processing occurs in the order that the elements were defined in L. map does not define the order in
which its elements are processed.

204 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 Funs

7.2.3 Syntax of Funs

Funs are written with the following syntax (see Fun Expressions for full description):
F = fun (Argl, Arg2, ... ArgN) ->
end B

This creates an anonymous function of N arguments and binds it to the variable F.

Another function, Funct i onName, written in the same module, can be passed as an argument, using the following
syntax:

F = fun FunctionName/Arity

With this form of function reference, the function that is referred to does not need to be exported from the module.

It isalso possible to refer to afunction defined in a different module, with the following syntax:

F = fun Module:FunctionName/Arity

In this case, the function must be exported from the module in question.
The following program illustrates the different ways of creating funs:

-module(fun test).
-export([tl/0, t2/0]).
-import(lists, [map/2]).
t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
t2() -> map(fun double/1, [1,2,3,4,5]).
double(X) -> X * 2.
The fun F can be evaluated with the following syntax:
F(Argl, Arg2, ..., Argn)
To check whether atermisafun, usethetesti s_f uncti on/ 1 inaguard.

Example:

f(F, Args) when is function(F) ->
apply(F, Args);

f(N,) when is integer(N) ->
N.

Funs are a distinct type. The BIFser | ang: f un_i nf o/ 1, 2 can be used to retrieve information about a fun, and
theBlIFerl ang: fun_to_|i st/ 1 returnsatextual representation of afun. Thecheck _process_code/ 2 BIF
returnst r ue if the process contains funs that depend on the old version of amodule.

7.2.4 Variable Bindings Within a Fun

The scope rules for variables that occur in funs are as follows:

« All variables that occur in the head of afun are assumed to be "fresh" variables.

* Variablesthat are defined before the fun, and that occur in function calls or guard tests within the fun, have the
values they had outside the fun.

e Variables cannot be exported from afun.
The following examplesillustrate these rules:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 205

7.2 Funs

print list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
file:close(Stream).

Here, the variable X, defined in the head of the fun, is a new variable. The variable St r eam which is used within
thefun, getsitsvaluefromthefi | e: open line.

Asany variable that occursin the head of afunis considered a new variable, it is equally valid to write as follows:

print list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(File) ->
io:format(Stream, "~p~n", [File])
end, List),
file:close(Stream).

Here, Fi | e isused asthe new variable instead of X. Thisis not so wise because code in the fun body cannot refer to
thevariable Fi | e, which is defined outside of the fun. Compiling this example gives the following diagnostic:

./FileName.erl:Line: Warning: variable 'File'
shadowed in 'fun'

This indicates that the variable Fi | e, which is defined inside the fun, collides with the variable Fi | e, which is
defined outside the fun.

The rules for importing variables into a fun has the consequence that certain pattern matching operations must be
moved into guard expressions and cannot be written in the head of the fun. For example, you might write the following
codeif you intend the first clause of F to be evaluated when the value of itsargument is Y:

f(...) ->
Y = ...
map (fun(X) when X == ->
() ->
end, :::)

instead of writing the following code:

f(...) ->

Y= ...
map (fun(Y) ->

7.2.5 Funs and Module Lists

The following examples show a dialogue with the Erlang shell. All the higher order functions discussed are exported
fromthemodulel i st s.

map
map takes a function of one argument and alist of terms:

map(F, [H|T]) -> [F(H)[map(F, T)1;
map (F, [1) -> [].

206 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 Funs

It returns the list obtained by applying the function to every argument in the list.

When anew fun is defined in the shell, the value of the fun is printed as Fun#<er | _eval >:

> Double = fun(X) -> 2 * X end.
#Fun<erl eval.6.72228031>

> lists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]

any

any takes a predicate P of one argument and alist of terms:

any(Pred, [H|T]) ->
case Pred(H) of
true -> true;
false -> any(Pred, T)
end;
any(Pred, [1) ->
false.

A predicate is afunction that returnst r ue or f al se. any istr ue if thereisaterm X in the list such that P(X)
istrue.

A predicate Bi g(X) isdefined, whichist r ue if its argument is greater that 10:

> Big = fun(X) -> if X > 10 -> true; true -> false end end.
#Fun<erl eval.6.72228031>

> lists:any(Big, [1,2,3,4]).

false

> lists:any(Big, [1,2,3,12,5]).

true

all

al | hasthe same argumentsasany:

all(Pred, [H|T]) ->
case Pred(H) of
true -> all(Pred, T);
false -> false
end;
all(Pred, []1) ->
true.

Itist r ue if the predicate applied to all elementsin thelistist r ue.
> lists:all(Big, [1,2,3,4,12,6]).
false

> lists:all(Big, [12,13,14,15]).
true

foreach

f or each takes afunction of one argument and alist of terms:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 207

7.2 Funs

foreach(F, [H|T]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.

The function is applied to each argument in thelist. f or each returnsok. It isonly used for its side-effect:

> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
1

2

3

4

ok

foldl

f ol dl takesafunction of two arguments, an accumulator and a list:

foldl(F, Accu, [Hd|Taill) ->
foldl(F, F(Hd, Accu), Tail);
foldl(F, Accu, []) -> Accu.

The function is called with two arguments. The first argument is the successive elements in the list. The second
argument is the accumulator. The function must return a new accumulator, which is used the next time the function
iscalled.

If you havealistof lisssL = ["I","like","Erlang"], then you can sum the lengths of all the stringsin L
asfollows:

> L = [”I”,Illike","Erlang"].

[IIIII’II'LikeII,IIEr'Langll]

10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
11

f ol dI workslikeawhi | e loop in an imperative language:

L= ["I","like","Erlang"],
Sum = 0,
while(L !'= []1){
Sum += length(head(L)),
L = tail(L)
end

mapfoldl

mapf ol dl simultaneously maps and folds over alist:

mapfoldl(F, Accu®, [Hd|Taill) ->
{R,Accul} = F(Hd, Accu0),
{Rs,Accu2} = mapfoldl(F, Accul, Tail),
{[R|Rs], Accu2};

mapfoldl(F, Accu, []) -> {[], Accu}.

The following example shows how to change al lettersin L to upper case and then count them.
First the change to upper case:

208 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 Funs

> Upcase = fun(X) when $a =< X, X =< $z -> X + $A - $%$a;
(X) -> X

end.

#Fun<erl eval.6.72228031>

> Upcase word =

fun(X) ->
lists:map(Upcase, X)
end.

#Fun<erl eval.6.72228031>

> Upcase word("Erlang").
"ERLANG"

> lists:map(Upcase word, L).
["I","LIKE","ERLANG"]

Now, the fold and the map can be done at the same time;

> lists:mapfoldl(fun(Word, Sum) ->
{Upcase word(Word), Sum + length(Word)}
end, 0, L).

{["I","LIKE","ERLANG"], 11}

filter
filter takesapredicate of one argument and alist and returns all elementsin thelist that satisfy the predicate:

filter(F, [H|T]) ->
case F(H) of
true -> [H|filter(F, T)I;
false -> filter(F, T)
end;
filter(F, [1) -> [].

> lists:filter(Big, [500,12,2,45,6,7]).
[500,12,45]

Combining maps and filters enables writing of very succinct code. For example, to define a set difference function
di ff (L1, L2) tobethedifference betweenthelistsL1 and L2, the code can be written asfollows:

diff(Ll, L2) ->
filter(fun(X) -> not member(X, L2) end, L1).

Thisgivesthelist of all elementsin L1 that are not contained in L2.
The AND intersection of thelist L1 and L2 is also easily defined:

intersection(L1l,L2) -> filter(fun(X) -> member(X,L1l) end, L2).

takewhile
t akewhi | e(P, L) takeselements X from alist L aslong asthe predicate P(X) istrue:

takewhile(Pred, [H|T]) ->
case Pred(H) of
true -> [H|takewhile(Pred, T)1;
false -> []
end;
takewhile(Pred, []) ->
[1.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 209

7.2 Funs

> lists:takewhile(Big, [200,500,45,5,3,45,6]).
[200,500,45]

dropwhile
dr opwhi | e isthe complement of t akewhi | e:

dropwhile(Pred, [H|T]) ->
case Pred(H) of
true -> dropwhile(Pred, T);
false -> [H|TI]
end;
dropwhile(Pred, []) ->
[1.

> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
[5,3,45,6]

splitwith

splitwith(P, L) splitsthelistL intothetwo sublists{L1, L2},whereL = takewhile(P, L) andL2
= dropwhil e(P, L):

splitwith(Pred, L) ->
splitwith(Pred, L, [1).

splitwith(Pred, [H|T], L) ->
case Pred(H) of
true -> splitwith(Pred, T, [H|L]);
false -> {reverse(L), [H|TI}
end;
splitwith(Pred, [], L) ->
{reverse(L), [1}.

> lists:splitwith(Big, [200,500,45,5,3,45,6]).
{[200,500,45],[5,3,45,6]}

7.2.6 Funs Returning Funs

So far, only functions that take funs as arguments have been described. More powerful functions, that themselves
return funs, can also be written. The following examplesillustrate these type of functions.

Simple Higher Order Functions
Adder (X) isafunction that given X, returns a new function Gsuch that G(K) returnsK + X:

> Adder = fun(X) -> fun(Y) -> X + Y end end.
#Fun<erl eval.6.72228031>

> Add6 = Adder(6).

#Fun<erl eval.6.72228031>

> Add6(10).

16

Infinite Lists

Theideaisto write something like:

210 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 Funs

-module(lazy).
-export([ints_ from/1]).
ints from(N) ->
fun() ->
[N]ints from(N+1)]
end.

Then proceed as follows:

> XX = lazy:ints from(1).
#Fun<lazy.0.29874839>

> XX().
[1|#Fun<lazy.0.29874839>]
> hd(XX()).

1

> Y = tL(XX()).

#Fun<lazy.0.29874839>

> hd(Y()).

2
And so on. Thisis an example of "lazy embedding”.
Parsing

The following examples show parsers of the following type:

Parser(Toks) -> {ok, Tree, Toksl} | fail

Toks isthelist of tokensto be parsed. A successful parsereturns{ ok, Tree, Toks1l}.

e Treeisaparsetree.

 Tokslisatail of Tr ee that contains symbols encountered after the structure that was correctly parsed.

An unsuccessful parse returnsf ai | .

The following example illustrates a simple, functional parser that parses the grammar:

(a | b) & (c | d)

The following code defines afunction pconst (X) in the module f
of tokens:

pconst(X) ->

fun (T) ->
case T of
[X|T1] -> {ok, {const, X}, T1};
. -> fail
end
end.

This function can be used as follows:

> P1 = funparse:pconst(a).
#Fun<funparse.0.22674075>
> P1([a,b,c]).

{ok, {const,a}, [b,c]}

> P1([x,y,z]).

fail

Ericsson AB. All Rights Reserved

unpar se, which returns afun that parsesalist

.: Erlang/OTP System Documentation | 211

7.2 Funs

Next, the two higher order functions pand and por are defined. They combine primitive parsers to produce more
complex parsers.

First pand:

pand(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R1, T1} ->
case P2(T1l) of
{ok, R2, T2} ->
{ok, {'and', R1, R2}};

fail ->
fail
end;
fail ->
fail
end
end.

Given a parser P1 for grammar Gl, and a parser P2 for grammar G2, pand(P1, P2) returns a parser for the
grammar, which consists of sequences of tokens that satisfy GL1, followed by sequences of tokens that satisfy G2.

por (P1, P2) returnsa parser for the language described by the grammar Gl or &2:

por(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R, T1} ->
{ok, {'or',1,R}, T1};
fail ->
case P2(T) of
{ok, R1, T1} ->
{ok, {'or',2,R1}, T1};
fail ->
fail
end
end
end.

The original problem wasto parsethegrammar (a | b) & (c¢ | d).Thefollowing code addressesthis problem:
grammar() ->
pand (
por(pconst(a), pconst(b)),
por(pconst(c), pconst(d))).
The following code adds a parser interface to the grammar:

parse(List) ->
(grammar()) (List).

The parser can be tested as follows:

212 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.3 List Comprehensions

> funparse:parse([a,c]).
{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
> funparse:parse([a,d]).
{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
> funparse:parse([b,c]).
{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
> funparse:parse([b,d]).
{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
> funparse:parse([a,b]).

fail

7.3 List Comprehensions

7.3.1 Simple Examples

This section starts with a ssmple example, showing a generator and afilter:

= [X || X <- [1121al3r4rb1516], X > 3].
[a,4,b,5,6]

Thisisread asfollows: Thelist of X such that X istaken fromthelist[1, 2, a, . . .] and X isgreater than 3.
Thenotation X <- [1, 2, a, ...] isagenerator and the expression X > 3 isafilter.

An additional filter,i s_i nt eger (X) , can be added to restrict the result to integers:

> [X || X <- [1,2,a,3,4,b,5,6], is integer(X), X > 3].
[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can be written as follows:

> [{X, Y} || X <- [1,2,3], Y <- [a,b]].
[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

7.3.2 Quick Sort

The well-known quick sort routine can be written as follows:

sort([Pivot|T]) ->
sort([X || X <- T, X < Pivot]) ++
[Pivot] ++
sort([X || X <- T, X >= Pivot]);
sort([]) -> [1].

Theexpression[X || X <- T, X < Pivot] isthelistof al elementsin T that are lessthan Pi vot .
[X]| X< T, X >= Pivot] isthelist of al elementsin T that are greater than or equal to Pi vot .
A list sorted asfollows:

« Thefirst element inthelist isisolated and the list is split into two sublists.

* Thefirst sublist contains all elementsthat are smaller than the first element in the list.

* The second sublist contains all elements that are greater than, or equal to, the first element in the list.
* Then the sublists are sorted and the results are combined.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 213

7.3 List Comprehensions

7.3.3 Permutations

The following example generates all permutations of the elementsin alist:

perms([1) -> [[]];
perms(L) -> [[H|T] || H<- L, T <- perms(L--[H])].
This takes Hfrom L in al possible ways. The result is the set of al lists[H| T] , where T is the set of al possible

permutations of L, with Hremoved:

> perms([b,u,qgl).
[[b,u,q],[b,g,ul,[u,b,gl,[u,g,bl,[g,b,ul,[g,u,b]]

7.3.4 Pythagorean Triplets
Pythagorean triplets are sets of integers{ A, B, C} suchthat A**2 + B**2 = C**2.

Thefunction pyt h(N) generatesalist of al integers{ A, B, C} suchthat A**2 + B**2 = C**2 and wherethe
sum of the sidesis equal to, or lessthan, N:

) ->

{A,B,C} ||
A <- lists:seq(1,N),
B <- lists:seq(1,N),
C <- lists:seq(1,N),
A+B+C =< N,
A*A+B*B == C*C

pyth(N
[

> pyth(3).
[

> pyth(11).
[1.

> pyth(12).
[{3,4,5},{4,3,5}]

> pyth(50).
[{3,4,5},
{4,3,5},
{5,12,13},
{6,8,10},
{8,6,10},
{8,15,17},
{9,12,15},
{12,5,13},
{12,9,15},
{12,16,20},
{15,8,17},
{16,12,20}1]

The following code reduces the search space and is more efficient:

pythl(N
[{A,

->

C} ||

<- lists:seq(1l,N-2),
<- lists:seq(A+1,N-1),
C <- lists:seq(B+1,N),
A+B+C =< N,

A*A+B*B == C*C].

)
B
A
B

214 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.3 List Comprehensions

7.3.5 Simplifications With List Comprehensions

Asan example, list comprehensions can be used to simplify some of the functionsinl i sts. erl :

append(L) -> [X || L1l <- L, X <- L1].
map(Fun, L) -> [Fun(X) || X <- LI].
filter(Pred, L) -> [X || X <- L, Pred(X)].

7.3.6 Variable Bindings in List Comprehensions
The scope rules for variables that occur in list comprehensions are as follows:

« All variablesthat occur in agenerator pattern are assumed to be "fresh" variables.

* Any variablesthat are defined before the list comprehension, and that are used in filters, have the values they
had before the list comprehension.

» Variables cannot be exported from alist comprehension.

As an example of these rules, suppose you want to write the function sel ect , which selects certain elements from a
list of tuples. Supposeyouwritesel ect (X, L) -> [Y || {X Y} <- L]. withtheintention of extracting
al tuplesfrom L, where the first item is X.

Compiling this gives the following diagnostic:
./FileName.erl:Line: Warning: variable 'X' shadowed in generate

Thisdiagnostic warnsthat the variable X in the pattern is not the same asthe variable X that occursin the function head.

Evaluating sel ect givesthe following result:
> select(b, [{a,1},{b,2},{c,3},{b,7}1).
[1,2,3,7]

Thisis not the wanted result. To achieve the desired effect, sel ect must be written as follows:
select(X, L) -> [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into the filter.
This now works as expected:

> select(b, [{a,1},{b,2},{c,3},{b,7}1).
[2,7]

Also notethat avariablein agenerator pattern will shadow avariable with the same name bound in aprevious generator
pattern. For example:

> [{X,Y} || X <- [1,2,3]1, X=Y <- [a,b,cl].
[{a,a},{b,b},{c,c}, {a,a},{b,b},{c,c},{a,a},{b,b},{c,c}]

A consequence of therulesfor importing variablesinto alist comprehensionsisthat certain pattern matching operations
must be moved into the filters and cannot be written directly in the generators.

Toillustrate this, do not write as follows:
f(...) ->
Y = ...
[Expression || PatternInvolving Y <- Expr, ...]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 215

7.4 Bit Syntax

Instead, write as follows:

f(.

L) >
Y = ...
[Expression || PatternInvolving Y1 <- Expr, Y == Y1, ...]

7.4 Bit Syntax

7.4.1 Introduction

The complete specification for the bit syntax appearsin the Reference Manual.

In Erlang, a Bin is used for constructing binaries and matching binary patterns. A Bin is written with the following
syntax:

<<E1l, E2, ... En>>
A Binisalow-level sequence of bits or bytes. The purpose of a Bin isto enable construction of binaries:
Bin = <<E1, E2, ... En>>
All elements must be bound. Or match a binary:
<<El, E2, ... En>> = Bin

Here, Bi n isbound and the elements are bound or unbound, asin any match.
A Bin does not need to consist of awhole number of bytes.

A bitstring is a sequence of zero or more bits, where the number of bits does not need to be divisible by 8. If the
number of bitsisdivisible by 8, the bitstring is also a binary.

Each element specifies a certain segment of the bitstring. A segment is a set of contiguous bits of the binary (not
necessarily on a byte boundary). The first element specifies the initial segment, the second element specifies the
following segment, and so on.

Thefollowing examplesillustrate how binaries are constructed, or matched, and how elements and tails are specified.
Examples

Example 1: A binary can be constructed from a set of constants or a string literal:

Binll
Binl2

<<1, 17, 42>>,
<<"abc">>

This gives two binaries of size 3, with the following evaluations:

e binary to_list(Binll) evaluatesto[1, 17, 42].

e binary_to_list(Binl2) evaluatesto[97, 98, 99].

Example 2: Similarly, abinary can be constructed from a set of bound variables:

A=1, B=17, C = 42,
Bin2 = <<A, B, C:16>>

Thisgivesabinary of size 4. Here, asize expression isused for the variable C to specify a 16-bits segment of Bi n2.
binary _to_list(Bin2) evaluatesto[1, 17, 00, 42].

Example 3: A Bin can aso be used for matching. D, E, and F are unbound variables, and Bi n2 is bound, asin
Example 2:

216 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Bit Syntax

<<D:16, E, F/binary>> = Bin2
ThisgivesD = 273,E = 00,and Fbindstoabinary of sizel:binary to list(F) = [42].
Example 4: The following is a more elaborate example of matching. Here, Dgr amis bound to the consecutive bytes
of an IP datagram of |P protocol version 4. The ambition is to extract the header and the data of the datagram:

-define(IP_VERSION, 4).
-define(IP_MIN HDR LEN, 5).

DgramSize = byte size(Dgram),
case Dgram of
<<?IP VERSION:4, HLen:4, SrvcType:8, TotlLen:16,
ID:16, Flgs:3, Frag0ff:13,
TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32,
DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
OptsLen = 4*(HLen - ?IP MIN HDR LEN),
<<0Opts:OptsLen/binary,Data/binary>> = RestDgram,

end.

Here, the segment corresponding to the Opt s variable hasatype modifier, specifying that Opt s isto bindto abinary.
All other variables have the default type equal to unsigned integer.

An |P datagram header is of variable length. Thislength is measured in the number of 32-bit wordsand isgivenin the
segment corresponding to HLen. The minimum value of HLen is 5. It is the segment corresponding to Opt s that is
variable, so if HLen isequal to 5, Opt s becomes an empty binary.

Thetail variables Rest Dgr amand Dat a bind to binaries, as al tail variables do. Both can bind to empty binaries.
The match of Dgr amfailsif one of the following occurs:

e Thefirst 4-bits segment of Dgr amis not equal to 4.
* HLenislessthan 5.
» Thesizeof Dgr amislessthan 4* HLen.

7.4.2 Lexical Note

Notice that "B=<<1>>" will beinterpreted as"B =< <1>>", which isasyntax error. The correct way to write the
expressionis: B = <<1>>,

7.4.3 Segments

Each segment has the following general syntax:

Val ue: Si ze/ TypeSpeci fi erLi st

The Si ze or the TypeSpeci fi er, or both, can be omitted. Thus, the following variants are allowed:
 Val ue

* Val ue: Si ze

e Val ue/ TypeSpeci fi erlLi st

Default values are used when specifications are missing. The default values are described in Defaults.

The Val ue part is any expression, when used in binary construction. Used in binary matching, the Val ue part must
be a literal or a variable. For more information about the Val ue part, see Constructing Binaries and Bitstrings and
Matching Binaries.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 217

7.4 Bit Syntax

The Si ze part of the segment multiplied by the unit in TypeSpeci fi er Li st (described later) gives the number
of bitsfor the segment. In construction, Si ze isany expression that evaluates to an integer. In matching, Si ze must
be a constant expression or avariable.

The TypeSpeci fi er Li st isalist of type specifiers separated by hyphens.

Type
The most commonly used typesarei nt eger , f| oat, and bi nar y. See Bit Syntax Expressionsin the
Reference Manual for a complete description.

Signedness
The signedness specification can be either si gned or unsi gned. Notice that signedness only matters for
matching.

Endianness
The endianness specification can be either bi g, i tt1 e, or nat i ve. Native-endian means that the endian is
resolved at load time, to be either big-endian or little-endian, depending on what is "native" for the CPU that
the Erlang machineisrun on.

Unit
Theunit sizeisgivenasuni t : | nt eger Li t er al . Theallowed range is 1-256. It ismultiplied by the Si ze
specifier to give the effective size of the segment. The unit size specifies the alignment for binary segments
without size.

Example:
X:4/little-signed-integer-unit:8

This element has atotal size of 4*8 = 32 bits, and it contains a signed integer in little-endian order.

7.4.4 Defaults

The default type for a segment is integer. The default type does not depend on the value, even if the value is aliteral.
For example, the default type in <<3. 14>> isinteger, not float.

Thedefault Si ze dependson thetype. For integeritis8. For float itis64. For binary itisall of thebinary. In matching,
thisdefault valueisonly valid for thelast element. All other binary elementsin matching must have asize specification.

The default unit depends on the the type. For i nt eger ,fl oat ,andbi t stri ngitisl. Forbinaryitis8.
The default signednessisunsi gned.
The default endiannessisbi g.

7.4.5 Constructing Binaries and Bitstrings

This section describes the rules for constructing binaries using the bit syntax. Unlike when constructing lists or tuples,
the construction of abinary can fail with abadar g exception.

There can be zero or more segmentsin abinary to be constructed. The expression <<>> constructsazero length binary.

Each segment in a binary can consist of zero or more bits. There are no alignment rules for individual segments of
typei nt eger andf | oat . For binariesand bitstrings without size, the unit specifiesthe alignment. Since the default
alignment for thebi nar y typeis8, the size of abinary segment must be amultiple of 8 bits, that is, only whole bytes.

Example:
<<Bin/binary,Bitstring/bitstring>>

Thevariable Bi n must contain awhole number of bytes, because the bi nar y type defaultstouni t : 8. A badar g
exception is generated if Bi n consist of, for example, 17 bits.

218 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Bit Syntax

TheBi t st ri ng variable can consist of any number of bits, for example, 0, 1, 8, 11, 17, 42, and so on. Thisisbecause
the default uni t for bitstringsis 1.

For clarity, it is recommended not to change the unit size for binaries. Instead, use bi nar y when you need byte
alignment and bi t st r i ng when you need bit alignment.

The following example successfully constructs a bitstring of 7 bits, provided that al of X and Y are integers:
<<X:1,Y:6>>
As mentioned earlier, segments have the following general syntax:

Val ue: Si ze/ TypeSpeci fi erLi st

When constructing binaries, Val ue and Si ze can be any Erlang expression. However, for syntactical reasons, both
Val ue and Si ze must be enclosed in parenthesis if the expression consists of anything more than asingle literal or
avariable. The following gives a compiler syntax error:

<<X+1:8>>
This expression must be rewritten into the following, to be accepted by the compiler:

<<(X+1):8>>

Including Literal Strings

A literal string can be written instead of an element:
<<"hello">>
Thisis syntactic sugar for the following:

<<$h, $e,$1,$1, $0>>

7.4.6 Matching Binaries

This section describes the rules for matching binaries, using the bit syntax.

There can be zero or more segments in a binary pattern. A binary pattern can occur wherever patterns are alowed,
including inside other patterns. Binary patterns cannot be nested. The pattern <<>> matches a zero length binary.

Each segment in abinary can consist of zero or morebits. A segment of typebi nar y must haveasizeevenly divisible
by 8 (or divisible by the unit size, if the unit size hasbeen changed). A segment of typebi t st r i ng hasnorestrictions
on the size. A segment of typef | oat must have size 64 or 32.

Asmentioned earlier, segments have the following general syntax:
Val ue: Si ze/ TypeSpeci fi erLi st

When matching Val ue, value must be either a variable or an integer, or a floating point literal. Expressions are not
allowed.

Si ze must be aguard expression, which can useliteralsand previously bound variables. Thefollowing isnot allowed:

foo(N, <<X:N,T/binary>>) ->
{X,T}.

The two occurrences of N are not related. The compiler will complain that the N in the size field is unbound.
The correct way to write this example is as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 219

7.4 Bit Syntax

foo(N, Bin) ->
<<X:N,T/binary>> = Bin,
{X,T}.

| Before OTP 23, Si ze wasrestricted to be an integer or a variable bound to an integer. |

Binding and Using a Size Variable

There is one exception to the rule that a variable that is as size must be previously bound. It is possible to match and
bind avariable, and use it as a size within the the same binary pattern. For example:

bar(<<Sz:8,Payload:Sz/binary-unit:8,Rest/binary>>) ->
{Payload,Rest}.

Here Sz is bound to the value in the first byte of the binary. Sz is then used at the number of bytes to match out
asabinary.

Starting in OTP 23, the size can be a guard expression:

bar(<<Sz:8,Payload: ((Sz-1)*8)/binary,Rest/binary>>) ->
{Payload,Rest}.

Here Sz is the combined size of the header and the payload, so we will need to subtract one byte to get the size of
the payload.

Getting the Rest of the Binary or Bitstring

To match out the rest of abinary, specify abinary field without size:
foo(<<A:8,Rest/binary>>) ->

The size of the tail must be evenly divisible by 8.

To match out the rest of a bitstring, specify afield without size:
foo(<<A:8,Rest/bitstring>>) ->

There are no restrictions on the number of bitsin the tail.

7.4.7 Appending to a Binary

Appending to abinary in an efficient way can be done as follows:

triples to bin(T) ->
triples to bin(T, <<>>).

triples to bin([{X,Y,Z} | T], Acc) ->
triples to bin(T, <<Acc/binary,X:32,Y:32,7:32>>);
triples_to bin([], Acc) ->
Acc.

220 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.1 Introduction

8 Efficiency Guide

8.1 Introduction

8.1.1 Purpose
"Premature optimization is the root of all evil" (D.E. Knuth)

Efficient code can be well-structured and clean, based on a sound overall architecture and sound algorithms. Efficient
cade can be highly implementation-code that bypasses documented interfaces and takes advantage of obscure quirks
in the current implementation.

Ideally, your code only contains the first type of efficient code. If that turns out to be too slow, profile the application
to find out where the performance bottlenecks are and optimize only the bottlenecks. Let other code stay as clean as
possible.

This Efficiency Guide cannot really teach you how to write efficient code. It can give you afew pointers about what to
avoid and what to use, and some understanding of how certain language features are implemented. This guide does not
include general tips about optimization that worksin any language, such as moving common cal cul ations out of loops.

8.1.2 Prerequisites

It is assumed that you are familiar with the Erlang programming language and the OTP concepts.

8.2 The Seven Myths of Erlang Performance

Some truths seem to live on well beyond their best-before date, perhaps because "information” spreads faster from
person-to-person than a single rel ease note that says, for example, that body-recursive calls have become faster.

This section triesto kill the old truths (or semi-truths) that have become myths.

8.2.1 Myth: Tail-Recursive Functions are Much Faster Than Recursive
Functions

According to the myth, using a tail-recursive function that builds a list in reverse followed by a cal to
lists:reverse/ 1 isfaster than a body-recursive function that builds the list in correct order; the reason being
that body-recursive functions use more memory than tail-recursive functions.

That was true to some extent before R12B. It was even more true before R7B. Today, not so much. A body-recursive
function generally uses the same amount of memory as atail-recursive function. It is generally not possible to predict
whether thetail-recursive or the body-recursive version will be faster. Therefore, use the version that makes your code
cleaner (hint: it is usually the body-recursive version).

For a more thorough discussion about tail and body recursion, see Erlang's Tail Recursion is Not a Silver Bullet.

A tail-recursive function that does not need to reverse the list at the end is faster than a body-recursive function,
as are tail-recursive functions that do not construct any terms at all (for example, afunction that sums all integers
inalist).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 221

href

8.2 The Seven Myths of Erlang Performance

8.2.2 Myth: Operator "++" is Always Bad

The ++ operator has, somewhat undeservedly, got a bad reputation. It probably has something to do with code like
the following, which is the most inefficient way thereisto reverse alist:

DO NOT

naive reverse([H|T]) ->
naive reverse(T)++[H];
naive reverse([]) ->

Asthe ++ operator copiesits |eft operand, the result is copied repeatedly, leading to quadratic complexity.
But using ++ asfollowsis not bad:
OK

naive but ok reverse([H|T], Acc) ->
naive but ok reverse(T, [H]++Acc);
naive but ok reverse([], Acc) ->
Acc.

Each list element is copied only once. The growing result Acc isthe right operand for the ++ operator, and it is not
copied.

Experienced Erlang programmers would write as follows:
DO

vanilla reverse([H|T], Acc) ->
vanilla reverse(T, [H|Accl);
vanilla reverse([], Acc) ->
Acc.

This is dightly more efficient because here you do not build a list element only to copy it directly. (Or it would be
more efficient if the compiler did not automatically rewrite[H] ++Acc to[H Acc] .)

8.2.3 Myth: Strings are Slow

String handling can be slow if done improperly. In Erlang, you need to think a little more about how the strings are
used and choose an appropriate representation. If you use regular expressions, use the re module in STDLIB instead
of the obsoleter egexp module.

8.2.4 Myth: Repairing a Dets File is Very Slow

The repair time is till proportional to the number of records in the file, but Dets repairs used to be much slower in
the past. Dets has been massively rewritten and improved.

8.2.5 Myth: BEAM is a Stack-Based Byte-Code Virtual Machine (and
Therefore Slow)

BEAM isaregister-based virtual machine. It has 1024 virtual registersthat are used for holding temporary values and
for passing arguments when calling functions. Variables that need to survive afunction call are saved to the stack.

BEAM is a threaded-code interpreter. Each instruction is word pointing directly to executable C-code, making
instruction dispatching very fast.

222 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.3 Common Caveats

8.2.6 Myth: Use " " to Speed Up Your Program When a Variable is
Not Used
That was once true, but from R6B the BEAM compiler can see that avariableis not used.

Similarly, trivial transformations on the source-code level such as converting acase statement to clauses at the top-
level of the function seldom makes any difference to the generated code.

8.2.7 Myth: A NIF Always Speeds Up Your Program

Rewriting Erlang code to a NIF to make it faster should be seen asalast resort. It is only guaranteed to be dangerous,
but not guaranteed to speed up the program.

Doing too much work in each NIF call will degrade responsiveness of the VM. Doing too little work may mean that
the gain of the faster processing in the NIF is eaten up by the overhead of calling the NIF and checking the arguments.

Be sureto read about Long-running NIFs before writing a NIF.

8.3 Common Caveats

This section lists afew modules and BIFs to watch out for, not only from a performance point of view.

8.3.1 Timer Module

Creating timers using erlang:send_after/3 and erlang:start_timer/3, is much more efficient than using the timers
provided by the timer module in STDLIB. Thet i mer module uses a separate process to manage the timers. That
process can easily become overloaded if many processes create and cancel timers frequently.

The functionsin the t i mer module that do not manage timers (such astiner:tc/ 3 orti ner: sl eep/ 1), do
not call the timer-server process and are therefore harmless.

8.3.2 Accidental Copying and Loss of Sharing

When spawning a new process using a fun, one can accidentally copy more data to the process than intended. For
example:
DO NOT
accidentall(State) ->
spawn(fun() ->

io:format("~p\n", [State#state.info])
end).

The code in the fun will extract one element from the record and print it. The rest of the st at e record is not used.
However, when the spawn/ 1 function is executed, the entire record is copied to the newly created process.
The same kind of problem can happen with a map:

DO NOT

accidental2(State) ->
spawn(fun() ->
io:format("~p\n", [map get(info, State)l])
end) .

In the following example (part of a module implementing the gen_server behavior) the created fun is sent to another
process:

DO NOT

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 223

8.3 Common Caveats

handle call(give me a fun, From, State) ->
Fun = fun() -> State#state.size =:= 42 end,
{reply, Fun, State}.

How bad that unnecessary copy is depends on the contents of the record or the map.
For example, if the st at e record isinitialized like this:

initl() ->
#state{data=lists:seq(1l, 10000)}.

alist with 10000 elements (or about 20000 heap words) will be copied to the newly created process.

An unncessary copy of 10000 element list can be bad enough, but it can get even worseif the st at e record contains
shared subterms. Here is a simple example of aterm with a shared subterm:

{SubTerm, SubTerm}

When aterm is copied to another process, sharing of subterms will be lost and the copied term can be many times
larger than the original term. For example:

init2() ->
SharedSubTerms = lists:foldl(fun(, A) -> [A|A] end, [0], lists:seq(l, 15)),
#state{data=Shared}.

In the process that callsi ni t 2/ 0, the size of the dat a field in the st at e record will be 32 heap words. When the
record is copied to the newly created process, sharing will be lost and the size of the copied dat a field will be 131070
heap words. More details about |oss off sharing are found in alater section.

To avoid the problem, outside of the fun extract only the fields of the record that are actually used:
DO

fixed accidentall(State) ->
Info = State#state.info,
spawn(fun() ->
io:format("~p\n", [Infol)
end).

Similarly, outside of the fun extract only the map elements that are actually used:
DO

fixed accidental2(State) ->
Info = map _get(info, State),
spawn(fun() ->
io:format("~p\n", [Info])
end).

8.3.3 list_to_atom/1

Atoms are not garbage-collected. Once an atom is created, it is never removed. The emulator terminates if the limit
for the number of atoms (1,048,576 by default) is reached.

Therefore, converting arbitrary input strings to atoms can be dangerous in a system that runs continuously. If only
certain well-defined atoms are allowed as input, list_to_existing_atom/1 can be used to guard against a denial-of-
service attack. (All atoms that are allowed must have been created earlier, for example, by simply using al of them
in amodule and loading that module.)

Using | i st _to_at onl 1 to construct an atom that is passed to appl y/ 3 as follows, is quite expensive and not
recommended in time-critical code:

224 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.3 Common Caveats

apply(list to atom("some prefix"++Var), foo, Args)

8.3.4 length/1

The time for calculating the length of alist is proportional to the length of the list, asopposed tot upl e_si ze/ 1,
byte size/ 1l,andbit _size/ 1, whichal executein constant time.

Normally, there is no need to worry about the speed of | engt h/ 1, because it is efficiently implemented in C. In
time-critical code, you might want to avoid it if the input list could potentially be very long.

Some uses of | engt h/ 1 can be replaced by matching. For example, the following code:

foo(L) when length(L) >= 3 ->

can be rewritten to:

fOO([717!7'7]=L) ->

Onedlight differenceisthat | engt h(L) failsif L isanimproper list, while the pattern in the second code fragment
accepts an improper list.

8.3.5 setelement/3

setelement/3 copies the tuple it modifies. Therefore, updating atuplein aloop using set el enmrent / 3 creates anew
copy of the tuple every time.

There is one exception to the rule that the tuple is copied. If the compiler clearly can see that destructively updating
the tuple would give the same result asif the tuple was copied, the call to set el emrent / 3 isreplaced with a specia
destructiveset el ement instruction. In the following code sequence, thefirst set el ermrent / 3 call copiesthetuple
and modifies the ninth element:

multiple setelement(TO) ->
Tl = setelement(9, TO, bar),
T2 = setelement(7, T1, foobar),
setelement (5, T2, new value).

Thetwo following set el erment / 3 calls modify the tuplein place.
For the optimization to be applied, all the followings conditions must be true:

* Theindices must be integer literals, not variables or expressions.
e Theindices must be given in descending order.
* There must be no calls to another function in between the callsto set el ement / 3.

e Thetuplereturned fromoneset el emrent / 3 call must only be used in the subsequent call to
set el enent/ 3.

If the code cannot be structured asinthenul ti pl e_set el enent/ 1 example, the best way to modify multiple
elementsin alargetupleisto convert the tuple to alist, modify the list, and convert it back to atuple.

8.3.6 size/l

si ze/ 1 returnsthe size for both tuples and binaries.

UsingtheBIFst upl e_si ze/ 1 andbyt e_si ze/ 1 givesthe compiler and the runtime system more opportunities
for optimization. Another advantage is that the BIFs give Dialyzer more type information.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 225

8.4 Constructing and Matching Binaries

8.3.7 split_binary/2

It is usualy more efficient to split a binary using matching instead of calling the spl it _bi nary/ 2 function.
Furthermore, mixing bit syntax matching and spl i t _bi nary/ 2 can prevent some optimizations of hit syntax
matching.

DO
<<Binl:Num/binary,Bin2/binary>> = Bin,
DO NOT

{Binl,Bin2} = split binary(Bin, Num)

8.4 Constructing and Matching Binaries
Binaries can be efficiently built in the following way:
DO

my list to binary(List) ->
my list to binary(List, <<>>).

my list to binary([H|T], Acc) ->
my list to binary(T, <<Acc/binary,H>>);

my list to binary([], Acc) ->
Acc.

Binaries can be efficiently matched like this:
DO

my binary to list(<<H,T/binary>>) ->
[Himy binary to list(T)];
my binary to list(<<>>) -> [].

8.4.1 How Binaries are Implemented

Internally, binaries and bitstrings are implemented in the same way. In this section, they are called binaries because
that iswhat they are called in the emulator source code.

Four types of binary objects are available internally:
* Two are containers for binary data and are called:
» Refcbinaries (short for refer ence-counted binaries)
* Heap binaries
e Two are merely references to apart of abinary and are called:
e subbinaries
e match contexts
Refc Binaries
Refc binaries consist of two parts:

» Anobject stored on the process heap, called a ProcBin
* Thebinary object itself, stored outside al process heaps

The binary object can be referenced by any number of ProcBins from any number of processes. The object contains a
reference counter to keep track of the number of references, sothat it can beremoved when thelast referencedisappears.

226 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Constructing and Matching Binaries

All ProcBin objects in a process are part of a linked list, so that the garbage collector can keep track of them and
decrement the reference counters in the binary when a ProcBin disappears.
Heap Binaries

Heap binaries are small binaries, up to 64 bytes, and are stored directly on the process heap. They are copied when
the process is garbage-collected and when they are sent as a message. They do not require any special handling by
the garbage collector.

Sub Binaries

The reference objects sub binaries and match contexts can reference part of arefc binary or heap binary.

A sub binary iscreated by spl i t _bi nary/ 2 and when abinary ismatched out in abinary pattern. A sub binary is
areferenceinto a part of another binary (refc or heap binary, but never into another sub binary). Therefore, matching
out abinary isrelatively cheap because the actual binary datais never copied.

Match Context

A match context is similar to a sub binary, but is optimized for binary matching. For example, it contains a direct
pointer to the binary data. For each field that ismatched out of abinary, the position in the match context isincremented.

The compiler tries to avoid generating code that creates a sub binary, only to shortly afterwards create a new match
context and discard the sub binary. Instead of creating a sub binary, the match context is kept.

The compiler can only do this optimization if it knows that the match context will not be shared. If it would be shared,
the functional properties (also called referential transparency) of Erlang would break.

8.4.2 Constructing Binaries

Appending to abinary or bitstring is specially optimized by the runtime system:

<<Binary/binary, ...>>
<<Binary/bitstring, ...>>

As the runtime system handles the optimization (instead of the compiler), there are very few circumstances in which
the optimization does not work.

To explain how it works, let us examine the following code line by line:

BinO = <<0>>, %% 1
Binl = <<Bin@/binary,1,2,3>>, %% 2
Bin2 = <<Binl/binary,4,5,6>>, %% 3
Bin3 = <<Bin2/binary,7,8,9>>, %% 4
Bin4 = <<Binl/binary,17>>, %% 5 11
{Bin4,Bin3} %% 6

e Linel (marked with the %86 1 comment), assigns a heap binary to the Bi nO variable.

e Line2isan append operation. AsBi n0 has not been involved in an append operation, anew refc binary is
created and the contents of Bi n0 is copied into it. The ProcBin part of the refc binary hasits size set to the size
of the data stored in the binary, while the binary object has extra space allocated. The size of the binary object is
either twice the size of Bi n1 or 256, whichever islarger. Inthis caseit is 256.

« Line3ismoreinteresting. Bi n1 has been used in an append operation, and it has 252 bytes of unused storage
at the end, so the 3 new bytes are stored there.

e Line4. The same applies here. There are 249 bytes left, so there is no problem storing another 3 bytes.

« Line5. Here, something inter esting happens. Notice that the result is not appended to the previous
result in Bi n3, but to Bi n1. It is expected that Bi n4 will be assigned thevalue<<0, 1, 2, 3, 17>>.

It is also expected that Bi n3 will retainitsvalue (<<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>>). Clearly, the

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 227

8.4 Constructing and Matching Binaries

runtime system cannot write byte 17 into the binary, because that would change the value of Bi n3 to
<<0,1,2,3,4,17,6,7, 8, 9>>.

The runtime system sees that Bi n1 is the result from a previous append operation (not from the latest append
operation), so it copies the contents of Bi n1 to a new binary, reserve extra storage, and so on. (Here is not explained
how the runtime system can know that it isnot allowed to writeinto Bi n1; it isleft asan exerciseto the curious reader
to figure out how it is done by reading the emulator sources, primarily er| _bits. c.)

Circumstances That Force Copying

The optimization of the binary append operation requires that there is a single ProcBin and a single r efer ence to the
ProcBin for the binary. The reason is that the binary object can be moved (reallocated) during an append operation,
and when that happens, the pointer in the ProcBin must be updated. If there would be more than one ProcBin pointing
to the binary object, it would not be possible to find and update all of them.

Therefore, certain operations on abinary mark it so that any future append operation will be forced to copy the binary.
In most cases, the binary object will be shrunk at the same time to reclaim the extra space allocated for growing.

When appending to a binary as follows, only the binary returned from the latest append operation will support further
cheap append operations:

Bin = <<Bin®@, ...>>

In the code fragment in the beginning of this section, appending to Bi n will be cheap, while appending to Bi n0 will
force the creation of anew binary and copying of the contents of Bi nO.

If abinary issent asamessageto aprocessor port, the binary will be shrunk and any further append operation will copy
the binary data into a new binary. For example, in the following code fragment Bi n1 will be copied in the third line:

Binl = <<Bin@,...>>,
PortOrPid ! Binl,
Bin = <<Binl,...>> %% Binl will be COPIED

The same happens if you insert a binary into an Ets table, send it to aport using er | ang: port _comrand/ 2, or
passit to enif_inspect_binary in aNIF.

Matching a binary will also cause it to shrink and the next append operation will copy the binary data:

Binl = <<Bin@,...>>,
<<X,Y,Z,T/binary>> = Binl,
Bin = <<Binl,...>> %% Binl will be COPIED

The reason is that a match context contains a direct pointer to the binary data.

If a process simply keeps binaries (either in "loop data' or in the process dictionary), the garbage collector can
eventually shrink the binaries. If only one such binary is kept, it will not be shrunk. If the process later appendsto a
binary that has been shrunk, the binary object will be reallocated to make place for the data to be appended.

8.4.3 Matching Binaries
Let usrevisit the example in the beginning of the previous section:

DO

my binary to list(<<H,T/binary>>) ->
[Himy binary to list(T)];
my binary to list(<<>>) -> [].

Thefirsttimemy_bi nary_to_li st/ 1 iscaled, amatch context is created. The match context points to the first
byte of the binary. 1 byte is matched out and the match context is updated to point to the second byte in the binary.

228 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Constructing and Matching Binaries

At this point it would make sense to create a sub binary, but in this particular example the compiler sees that there
will soon beacall toafunction (inthiscase,tony_bi nary_to_li st/ 1 itself) that immediately will create a new
match context and discard the sub binary.

Thereforeny_bi nary_to_|i st/ 1 callsitsalf with the match context instead of with a sub binary. Theinstruction
that initializes the matching operation basically does nothing when it sees that it was passed a match context instead
of abinary.

When the end of the binary is reached and the second clause matches, the match context will simply be discarded
(removed in the next garbage collection, as there is no longer any reference to it).

Tosummarize, my_binary_to_|ist/ 1 only needsto create one match context and no sub binaries.

Noticethat thematch contextinmy_bi nary_to_|i st/ 1 wasdiscarded when the entire binary had been traversed.
What happensiif the iteration stops before it has reached the end of the binary? Will the optimization still work?

after zero(<<0,T/binary>>) ->
T;

after zero(<< ,T/binary>>) ->
after zero(T);

after zero(<<>>) ->
<<>>,

Yes, it will. The compiler will remove the building of the sub binary in the second clause;

after zero(<< ,T/binary>>) ->
after zero(T);

But it will generate code that builds a sub binary in the first clause:

after zero(<<0,T/binary>>) ->
T;

Therefore, af t er _zer o/ 1 builds one match context and one sub binary (assuming it is passed abinary that contains
azero byte).

Code like the following will also be optimized:

all but zeroes to list(Buffer, Acc, 0) ->
{lists:reverse(Acc),Buffer};

all but zeroes to list(<<0,T/binary>>, Acc, Remaining) ->
all but zeroes to list(T, Acc, Remaining-1);

all but zeroes to list(<<Byte,T/binary>>, Acc, Remaining) ->
all but zeroes to list(T, [Byte|Acc], Remaining-1).

The compiler removes building of sub binaries in the second and third clauses, and it adds an instruction to the first
clause that converts Buf f er from a match context to a sub binary (or do nothing if Buf f er isabinary already).

But in more complicated code, how can one know whether the optimization is applied or not?
Option bin_opt_info

Usethebi n_opt _i nf o option to have the compiler print alot of information about binary optimizations. It can be
given either to the compiler orer | c:

erlc +bin opt info Mod.erl

or passed through an environment variable:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 229

8.5 Maps

export ERL _COMPILER OPTIONS=bin opt info

Notice that the bi n_opt _i nf o is not meant to be a permanent option added to your Makef i | es, because all
messages that it generates cannot be eliminated. Therefore, passing the option through the environment is in most
cases the most practical approach.

The warnings look as follows:

./efficiency guide.erl:60: Warning: NOT OPTIMIZED: binary is returned from the function
./efficiency guide.erl:62: Warning: OPTIMIZED: match context reused

To make it clearer exactly what code the warnings refer to, the warnings in the following examples are inserted as
comments after the clause they refer to, for example:

after zero(<<0,T/binary>>) ->
%% BINARY CREATED: binary is returned from the function
T;
after zero(<< ,T/binary>>) ->
%% OPTIMIZED: match context reused
after zero(T);
after_zero(<<>>) ->
<<>>,

The warning for the first clause says that the creation of a sub binary cannot be delayed, because it will be returned.
The warning for the second clause says that a sub binary will not be created (yet).

Unused Variables
The compiler figures out if avariable is unused. The same code is generated for each of the following functions:

countl(<< ,T/binary>>, Count) -> countl(T, Count+l);
countl(<<>>, Count) -> Count.

count2(<<H,T/binary>>, Count) -> count2(T, Count+l);
count2(<<>>, Count) -> Count.

count3(<< H,T/binary>>, Count) -> count3(T, Count+l);
count3(<<>>, Count) -> Count.

In each iteration, the first 8 bitsin the binary will be skipped, not matched out.

8.4.4 Historical Note

Binary handling was significantly improved in R12B. Because code that was efficient in R11B might not be efficient
in R12B, and vice versa, earlier revisions of this Efficiency Guide contained some information about binary handling
in R11B.

8.5 Maps

This guide to using maps efficiently starts with a brief section on the choice between records or maps, followed by
three sections giving concrete (but brief) advice on using maps as an alternative to records, as dictionaries, and as sets.
The remaining sections dig deeper, looking at how maps are implemented, the map syntax, and finally the functions
in the maps module.

Terminology used in this chapter:

e A map with at most 32 elementswill informally be called a small map.
* A map with more than 32 elements will informally be called alar ge map.

230 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Maps

8.5.1 Maps or Records?

If the advicein this chapter is followed, the performance of records compared to using small mapsinstead of records
is expected to be similar. Therefore, the choice between records and maps should be based on the desired properties
of the data structure and not performance.

The advantages of records compared to maps are:

If the name of arecord field is misspelled, there will be a compilation error. If amap key is misspelled, the
compiler will give no warning and program will fail in some way when it is run.

Records will use slightly less memory than maps, and performance is expected to be slightly better than maps
in most circumstances.

The disadvantage of records compared to mapsisthat if anew field is added to arecord, al code that uses that record
must be recompiled. Because of that, it is recommended to only use records within a unit of code that can easily be
recompiled all at once, for example within a single application or single module.

8.5.2 Using Maps as an Alternative to Records

Use the map syntax instead of the functions in the maps module.

Avoid having more than 32 elements in the map. As soon as there are more than 32 elementsin the map, it will
reguire more memory and keys can no longer be shared with other instances of the map.

When creating anew map, always create it with al keysthat will ever be used. To maximize sharing of keys (thus
minimizing memory use), create asingle function that constructs the map using the map syntax and always useiit.
Always update the map using the : = operator (that is, requiring that an element with that key already exists). The
: = operator is dightly more efficient, and it hel ps catching mispellings of keys.

Whenever possible, match multiple map elements at once.

Whenever possible, update multiple map elements at once.

Avoid default values and the maps.get/3 function. If there are default values, sharing of keys between different
instances of the map will be less effective, and it is not possible to match multiple elements having default values
inone go. Themaps: get / 3 function isimplemented in Erlang, making it less efficient than maps: get/ 2 or
the map matching syntax.

To avoid having to deal with a map that may lack some keys, maps:merge/2 can efficiently add multiple default
values. For example:

DefaultMap = #{shoe size => 42, editor => emacs},
MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

8.5.3 Using Maps as Dictionaries

Using amap as adictionary implies the following usage pattern:

Keys are usually variables not known at compile-time.
There can be any number of elementsin the map.
Usually, no more than one element is looked up or updated at once.

Given that usage pattern, the difference in performance between using the map syntax and the maps moduleis usually
small. Therefore, which one to use is mostly a matter of taste.

Maps are usually the most efficient dictionary data structure, with afew exceptions:

If it is necessary to frequently convert a dictionary to a sorted list, or from a sorted list to a dictionary, using
gb_trees can be a better choice.

If al keys are non-negative integers, the array module can be a better choice.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 231

8.5 Maps

8.5.4 Using Maps as Sets

Starting in OTP 24, the sets module has an option to represent sets as maps. Examples:

1> sets:new([{version,2}]).

#{}

2> sets:from list([x,y,z], [{version,2}]).
#{x = [1,y == [1,z => []}

set s backed by mapsis generally the most efficient set representation, with afew possible exceptions:

e ordsets:intersection/2 can be more efficient than sets:intersection/2. If the intersection operation isfrequently used
and operations that operate on asingle element in aset (such asi s_el enent / 2) are avoided, ordsets can be

abetter choice than sets.

« If the intersection operation is frequently used and operations that operate on a single element in a set (such as

i s_el emrent/ 2) must also be efficient, gb_sets can potentially be a better choice than sets.

« |f the elements of the set are integers in a fairly compact range, the set can be represented as an integer where
each bit represents an element in the set. The union operation is performed by bor and the intersection operation

by band.

8.5.5 How Maps are Implemented

Internally, maps have two distinct representati ons depending on the number of elementsin the map. The representation

changes when a map grows beyond 32 elements, or when it shrinks to 32 elements or less.

* A map with at most 32 elements has a compact representation, making it suitable as an alternative to records.

« A map with morethan 32 elementsis represented as atree that can be efficiently searched and updated
regardless of how many elements there are.

How Small Maps are Implemented

A small map looks like thisinside the runtime system:

FLATVAP N Keys Valuel c ValueN

Table 5.1: The representation of a small map

FLATMAP
Thetag for asmall map (called flat map in the source code for the runtime system).
N
The number of elementsin the map.
Keys
A tuple with keys of the map: { Key1, . . ., KeyN}. The keys are sorted.
Vauel
The value corresponding to the first key in the key tuple.
VaueN
The value corresponding to the last key in the key tuple.

Asan example, let uslook at how themap#{a => foo, z => bar} isrepresented:

FLATVAP 2 {a,z} foo bar

Table 5.2: #{a => foo, z => bar}

232 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Maps

Let us update the map: M#{ q => baz} . The map now lookslike this:

FLATMAP 3 {a,9,2} foo baz bar

Table 5.3: #{a => foo, q => baz, z => bar}

Finally, change the value of one element;: M#{ z : = bi r d} . The map now looks like this:

FLATMAP 3 {a,9,2} foo baz bird

Table 5.4: #{a => foo, q => baz, z => bird}

When the value for an existing key is updated, the key tuple is not updated, allowing the key tuple to be shared with
other instances of the map that have the same keys. In fact, the key tuple can be shared between all mapswith the same
keys with some care. To arrange that, define a function that returns a map. For example:

new() ->
#{a => default, b => default, c => default}.

Defined like this, the key tuple{ a, b, c} will beaglobal literal. To ensure that the key tupleis shared when creating
an instance of the map, always call new() and modify the returned map:

(SOME_MODULE:new())#{a := 42}.

Using the map syntax with small maps is particularly efficient. As long as the keys are known at compile-time, the
map is updated in one go, making the time to update a map essentially constant regardless of the number of keys
updated. The same goes for matching. (When the keys are variables, one or more of the keys could be identical, so
the operations need to be performed sequentially from left to right.)

The memory size for asmall map isthe size of all keys and values plus 5 words. See Advanced for more information
about memory sizes.

How Large Maps are Implemented

A map with more than 32 elements is implemented as a Hash array mapped trie (HAMT). A large map can be
efficiently searched and updated regardiess of the number of elements in the map.

Thereisless performance to be gained by matching or updating multiple elements using the map syntax on alarge map
compared to asmall map. The execution time is roughly proportional to the number of elements matched or updated.

The storage overhead for alarge map is higher than for asmall map. For alarge map, the extranumber of words besides
the keys and values is roughly proportional to the number of elements. For a map with 33 elements the overhead is
at least 53 heap words according to the formulain Advanced (compared to 5 extrawords for a small map regardless
of the number of elements).

When alarge map is updated, the updated map and the original map will share common parts of the HAMT, but sharing
will never be as effective as the best possible sharing of the key tuple for small maps.

Therefore, if maps are used instead of records and it is expected that many instances of the map will be created, it is
more efficient from a memory standpoint to avoid using large maps (for example, by grouping related map elements
into sub maps to reduce the number of elements).

8.5.6 Using the Map Syntax

Using the map syntax is usually slightly more efficient than using the corresponding function in the maps module.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 233

href

8.5 Maps

The gain in efficiency for the map syntax is more noticeable for the following operations that can only be achieved
using the map syntax:

e Matching multiple literal keys

e Updating multiple literal keys

e Adding multiple literal keysto amap
For example:

DO

Map = Mapl#{x := X, y :=Y, z := 7}

DO NOT
Map2 = maps:update(x, X, Mapl),
Map3 = maps:update(y, Y, Map2),

Map = maps:update(z, Z, Map3)
If the map is asmall map, the first example runs roughly three times as fast.

Note that for variable keys, the elements are updated sequentially from left to right. For example, given the following
update with variable keys:

Map = Mapl#{Keyl := X, Key2 :=Y, Key3 := 7}
the compiler rewritesit like thisto ensure that the updates are applied from left to right:
Map2 = Mapl#{Keyl := X},

Map3 = Map2#{Key2 := Y},
Map = Map3#{Key3 := 7}

If akey is known to exist in a map, using the : = operator is dightly more efficient than using the => operator for
asmall map.

8.5.7 Using the Functions in the maps Module

Here follows some notes about most of the functions in the maps module. For each function, the implementation
language (C or Erlang) is stated. The reason we mention the language is that it gives an hint about how efficient the
functionis:

« Ifafunctionisimplementedin C, itispretty muchimpossibleto implement the samefunctionality more efficiently
in Erlang.

* However, it might be possible to beat the maps modules functions implemented in Erlang, because they are
generally implemented in away that attempts to make the performance reasonable for al possible inputs.

For example, maps:map/2 iterates over all elements of the map, calling the mapping fun, collects the updated map
elementsin alist, and finally converts the list back to a map using maps:from_list/1. If it is known that at most
one percent of the valuesin the map will change, it can be more efficient to update only the changed values.

‘ The implementation details given in this section can change in the future. ‘

maps:filter/2

maps:filter/2 isimplemented in Erlang. It creates anew map using maps.from_list/1. If it isknown that only aminority
of the values will be removed, it can be more efficient to avoid maps: fi | t er/ 2 and write afunction that will use
maps.remove/3 to remove the unwanted values.

234 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Maps

maps:filtermap/2

maps:filtermap/2 is implemented in Erlang. It creates a new map using maps.from list/1. See the notes for
maps: nap/ 2 and maps: fil t er/ 2 for hints on how to implement a more efficient version.

maps:find/2

maps:find/2 isimplemented in C.

Using the map matching syntax instead of maps: fi nd/ 2 will be dsightly more efficient since building an
{ ok, Val ue} tuplewill be avoided.

maps:get/2

Asan optimization, the compiler will rewrite acall to maps.get/2 to acall to the guard BIF map_get/2. A call toaguard
BIF is more efficient than calls to other BIFs, making the performance similar to using the map matching syntax.

If the map is small and the keys are constants known at compile-time, using the map matching syntax will be more
efficient than multiple callsto maps: get / 2.

maps:get/3
maps:get/3 isimplemented in Erlang essentially like this:
get(Key, Map, Default) ->
case Map of
#{Key := Value} -> Value;

#{} -> Default
end.

Therefore, acall maps: get / 3 ismore expensive than acall to maps: get/ 2.
If asmall map isused asalternativeto using arecord, instead of calling maps: get / 3 multipletimesto handle default
values, consider putting the default values in amap and merging that map with the other map:

DefaultMap = #{Keyl => Value2, Key2 => Value2, ..., KeyN => ValueN},
MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

Whether that is faster than calling maps: get / 3 multiple times depends on the size of the map and the number of
default values.
maps:intersect/2, maps:intersect with/3

maps:intersect/2 and maps.intersect with/3 are implemented in Erlang. They both create new maps using
maps:.from_list/1.

A map is usualy the most efficient way to implement a set, but an exception is the intersection operation, where
ordsets:intersection/2 used on ordsets can be more efficient than maps: i nt er sect / 2 on sets implemented as

maps.

maps:from_list/1
maps.from_list/1 isimplemented in C.

maps:from_keys/2
maps:.from_keys/2 isimplemented in C.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 235

8.5 Maps

maps:is_key/2

As an optimization, the compiler rewrites calls to maps.is _key/2 to calls to the guard BIF is_ map_key/2. A call to a
guard BIF ismore efficient than callsto other BIFs, making the performance similar to using the map matching syntax.

maps:iterator/1

maps.iterator/1 is efficiently implemented in C and Erlang.

maps:keys/1

maps.keys/1 isimplemented in C. If the resulting list needs to be ordered, use lists:sort/1 to sort the result.
maps:map/2

maps.map/2 isimplemented in Erlang. It creates anew map using maps.from_list/1. If it isknown that only aminority
of the values will be updated, it can be more efficient to avoid maps: nmap/ 2 and write a function that will call
maps: update/3 to update only the values that have changed.

maps:merge/2

maps:merge/2 isimplemented in C.

maps:merge_with/3

maps.merge_with/3 isimplemented in Erlang. It updates and returns the larger of the two maps.
maps:new/0

The compiler rewrites a call to maps:new/0 to using the syntax #{} for constructing an empty map.
maps:next/1

maps:next/1 is efficiently implemented in C and Erlang.

maps:put/3

maps:put/3 isimplemented in C.

If the key is known to already exist in the map, maps:update/3 is slightly more efficient than maps: put / 3.

If the keys are constants known at compile-time, using the map update syntax with the => operator is more efficient
than multiple callsto maps: put / 3, especially for small maps.

maps:remove/2
maps.remove/2 isimplemented in C.
maps:size/l

As an optimization, the compiler rewrites calls to maps:size/1 to calls to the guard BIF map_size/1. Calls to guard
BIFs are more efficient than calls to other BIFs.

maps:take/2
maps:take/2 isimplemented in C.
maps:to_list/1

maps:to_list/1 is efficiently implemented in C and Erlang. If the resulting list needs to be ordered, use lists:sort/1 to
sort the result.

236 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 List Handling

Maps are usually more performant than gb_trees, but if it is necessary to frequently convert to and from sorted
lists, gb_t r ees can be a better choice.

maps:update/3
maps:update/3 isimplemented in C.

If the keys are constants known at compile-time, using the map update syntax with the : = operator is more efficient
than multiple callsto maps: updat e/ 3, especialy for small maps.

maps:values/l

maps:values/1 isimplemented in C.

maps:with/2

maps:with/2 isimplemented in Erlang. It creates a new map using maps.from_list/1.
maps:without/2

maps:without/2 isimplemented in Erlang. It returns amodified copy of the input map.

8.6 List Handling
8.6.1 Creating a List

Lists can only be built starting from the end and attaching list elements at the beginning. If you use the"++" operator
asfollows, anew list is created that isa copy of theelementsin Li st 1, followed by Li st 2:

Listl ++ List2
Looking at how | i st s: append/ 1 or ++ would be implemented in plain Erlang, clearly the first list is copied:

append([H|T], Tail) ->
[H|append(T, Tail)];

append([], Tail) ->
Tail.

When recursing and building alist, it is important to ensure that you attach the new elements to the beginning of the
list. In thisway, you will build one list, not hundreds or thousands of copies of the growing result list.

Let usfirst see how it is not to be done:
DO NOT

bad fib(N) ->
bad fib(N, 0, 1, [1).

bad fib(0, Current, Next, Fibs) ->
Fibs;
bad fib(N, Current, Next, Fibs) ->
bad fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

Here more than one list is built. In each iteration step a new list is created that is one element longer than the new
previous list.

To avoid copying the result in each iteration, build the list in reverse order and reverse the list when you are done:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 237

8.6 List Handling

DO

tail recursive fib(N) ->
tail recursive fib(N, 0, 1, []).

tail recursive fib(©, _Current, Next, Fibs) ->
lists:reverse(Fibs);
tail recursive fib(N, Current, Next, Fibs) ->
tail recursive fib(N - 1, Next, Current + Next, [Current|Fibs]).

8.6.2 List Comprehensions

Lists comprehensions till have a reputation for being slow. They used to be implemented using funs, which used
to be slow.

A list comprehension:
[Expr(E) || E <- List]
isbasically trandated to alocal function:

'"1c™0' ([E|Taill, Expr) ->
[Expr(E)|'lc™0'(Tail, Expr)l];
'lcr0' ([1, Expr) -> [1.

If the result of the list comprehension will obviously not be used, a list will not be constructed. For example, in this
code:

[io:put chars(E) || E <- List],
ok.

or in this code:

case Var of
. =>
[io:put chars(E) || E <- List];
->
end,
some_function(...),

the value is not assigned to a variable, not passed to another function, and not returned. This means that there is no
need to construct alist and the compiler will simplify the code for the list comprehension to:

'1c”0' ([E|Tail], Expr) ->
Expr(E),
'1c”0' (Tail, Expr)
‘1c™0' ([]1, Expr) -> [].

The compiler aso understands that assigning to ' ' means that the value will not used. Therefore, the code in the
following example will aso be optimized:

= [io:put_chars(E) || E <- List],
ok.

8.6.3 Deep and Flat Lists

lists:flatten/1 builds an entirely new list. It is therefore expensive, and even mor e expensive than the ++ operator
(which copiesits left argument, but not its right argument).

238 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 List Handling

In the following situations, you can easily avoid callingl i sts: fl atten/ 1:

* When sending data to a port. Ports understand deep lists so there is no reason to flatten the list before sending it
to the port.

» When calling BIFs that accept deep lists, such aslist_to binary/1 or iolist_to_binary/1.
* When you know that your list is only one level deep, you can use lists:append/1.

Port Example
DO
bééticommand(Port, DeepList)

DO NOT

béét_command(Port, lists:flatten(DeeplList))
A common way to send a zero-terminated string to a port is the following:

DO NOT

TerminatedStr = String ++ [0], % String="foo" => [$f, $0, $0, 0]
port command(Port, TerminatedStr)

Instead:
DO

TerminatedStr = [String, 0], % String="foo" => [[$f, $0, $o], O]
port command(Port, TerminatedStr)

Append Example

DO
> lists:append([[1], [2], [3]11).
[41,2,3]
>

DO NOT

> lists:flatten([[1], [2], [3]]).
[1,2,3]

>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 239

8.7 Functions

8.6.4 Recursive List Functions

In section about myths, the following myth was exposed: Tail-Recursive Functions are Much Faster Than Recursive
Functions.

Thereisusually not much difference between abody-recursivelist function and tail-recursive function that reversesthe
list at the end. Therefore, concentrate on writing beautiful code and forget about the performance of your list functions.
In the time-critical parts of your code (and only there), measur e before rewriting your code.

This section is about list functions that construct lists. A tail-recursive function that does not construct alist runs
in constant space, while the corresponding body-recursive function uses stack space proportional to the length of
thelist.

For example, afunction that sums alist of integers, is not to be written as follows:

DO NOT
recursive sum([H|T]) -> H+recursive sum(T);
recursive sum([]) -> 0.

Instead:

DO

sum(L) -> sum(L, 0).

sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum) -> Sum.

8.7 Functions
8.7.1 Pattern Matching

Pattern matching in function head as well asin case and r ecei ve clauses are optimized by the compiler. With a
few exceptions, there is nothing to gain by rearranging clauses.

One exception is pattern matching of binaries. The compiler does not rearrange clauses that match binaries. Placing
the clause that matches against the empty binary last is usualy dlightly faster than placing it fir st.

Thefollowing is arather unnatural example to show another exception:
DO NOT

atom mapl(one) -> 1;

atom mapl(two) -> 2;

atom mapl(three) -> 3;

atom mapl(Int) when is integer(Int) -> Int;
atom mapl(four) -> 4;

atom mapl(five) -> 5;

atom mapl(six) -> 6.

The problem isthe clause with the variable | nt . Asavariable can match anything, including the atomsf our ,fi ve,
andsi x, whichthefollowing clausesa so match, the compiler must generate suboptimal codethat executesasfollows:

» Fird, theinput value is compared to one, t wo, and t hr ee (using a single instruction that does a binary
search; thus, quite efficient even if there are many values) to select which one of the first three clausesto
execute (if any).

240 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 Functions

selected. (Thereisaf uncti on_cl ause exception if none of
Rewriting to either:
DO

atom map2(one) -> 1;

atom map2(two) -> 2;

atom map2(three) -> 3;

atom map2(four) -> 4;

atom map2(five) -> 5;

atom map2(six) -> 6;

atom map2(Int) when is integer(Int) -> Int.

or:
DO

atom map3(Int) when is integer(Int) -> Int;
atom map3(one) -> 1;

atom map3(two) -> 2;

atom map3(three) -> 3;

atom map3(four) -> 4;

atom map3(five) -> 5;

atom map3(six) -> 6.

gives dlightly more efficient matching code.

Another example:

DO NOT
map_pairsl(_Map, [1, Ys) ->
Ys;
map_pairsl(Map, Xs, []1) ->
Xs;
map_pairsl(Map, [X|Xs]l, [Y]|Ys]) ->

[Map(X, Y)|map pairsl(Map, Xs, Ys)].

If none of the first three clauses match, the fourth clause match as a variable always matches.
If theguardtesti s_i nt eger (I nt) succeeds, the fourth clause is executed.
If the guard test fails, the input value is compared to f our , f i ve, and si X, and the appropriate clauseis

the values matched.)

Thefirst argument isnot aproblem. It isvariable, but itisavariablein all clauses. The problem isthe variable in the
second argument, Xs, in the middle clause. Because the variable can match anything, the compiler is not allowed to
rearrange the clauses, but must generate code that matches them in the order written.

If the function is rewritten as follows, the compiler is free to rearrange the clauses:

DO
map_pairs2(_Map, [1, Ys) ->
Ys;
map_pairs2(Map, [| 1=Xs, [1) ->
Xs;
map_pairs2(Map, [X|Xsl, [Y]|Ys]) ->

[Map(X, Y)|map pairs2(Map, Xs, Ys)].

The compiler will generate code similar to this:
DO NOT (already done by the compiler)

Ericsson AB. All Rights Reserved

.: Erlang/OTP System Documentation | 241

8.7 Functions

explicit map pairs(Map, Xs0, YsQ) ->
case Xs0O of
[X|Xs] ->
case Ys0O of
[Y|Ys] ->
[Map(X, Y)|explicit map pairs(Map, Xs, Ys)l;
[m->
Xs0
end;
[1->
YsO
end.

Thisis dightly faster for probably the most common case that the input lists are not empty or very short. (Another
advantage isthat Dialyzer can deduce a better type for the Xs variable.)

8.7.2 Function Calls

This is an intentionally rough guide to the relative costs of different calls. It is based on benchmark figures run on
Solarig/Sparc:

» Cadlstoloca or externa functions (f oo() , m f oo()) arethe fastest calls.

e Cdling or applying afun (Fun() ,appl y(Fun, [])) isaboutthreetimesasexpensiveascalling alocal
function.

* Applying an exported function (Mod: Nane(), appl y(Mod, Nane, []))isabout twice asexpensive as
calling afun or about six times as expensive as calling alocal function.

Notes and Implementation Details

Calling and applying afun does not involve any hash-tablelookup. A fun contains an (indirect) pointer to the function
that implements the fun.

app! y/ 3 must look up the code for the function to execute in a hash table. It istherefore always slower than a direct
cal or afun call.

It no longer matters (from a performance point of view) whether you write:
Module:Function(Argl, Arg2)

or:
apply(Module, Function, [Argl,Arg2])

The compiler internally rewrites the latter code into the former.
The following codeis slightly slower because the shape of the list of arguments is unknown at compile time.

apply(Module, Function, Arguments)

8.7.3 Memory Usage in Recursion

When writing recursive functions, it is preferable to make them tail-recursive so that they can execute in constant
memory space:

DO

242 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8 Tables and Databases

list length(List) ->
list length(List, 0).

list length([], AccLen) ->
AcclLen; % Base case

list length([|Tail], AccLen) ->
list length(Tail, AccLen + 1). % Tail-recursive

DO NOT

list length([]) ->
0. % Base case
list_length([_ | Tail]) ->
list length(Tail) + 1. % Not tail-recursive

8.8 Tables and Databases
8.8.1 Ets, Dets, and Mnesia

Every example using Ets hasacorresponding examplein Mnesia. In general, all Etsexamplesalso apply to Detstables.

Select/Match Operations

Select/match operations on Ets and Mnesia tables can become very expensive operations. They usually need to scan
the complete table. Try to structure the data to minimize the need for select/match operations. However, if you require
aselect/match operation, it is still more efficient than usingt ab2l i st . Examples of this and of how to avoid select/
match are provided in the following sections. The functions et s: sel ect/ 2 and rmesi a: sel ect/ 3 areto be
preferred over et s: mat ch/ 2, et s: nat ch_obj ect/ 2, and mesi a: mat ch_obj ect/ 3.

In some circumstances, the select/match operations do not need to scan the complete table. For example, if part of the
key is bound when searching an or der ed_set table, or if it isaMnesiatable and there is a secondary index on the
field that is selected/matched. If the key is fully bound, there is no point in doing a select/match, unless you have a
bag table and are only interested in a subset of the elements with the specific key.

When creating arecord to be used in a select/match operation, you want most of the fields to havethevalue" . The
easiest and fastest way to do that is as follows:

#person{age = 42, = '}.

Deleting an Element

The del et e operation is considered successful if the element was not present in the table. Hence al attempts to
check that the element is present in the EtYMnesia table before deletion are unnecessary. Here follows an example
for Etstables:

DO

ets:delete(Tab, Key),

DO NOT

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 243

8.8 Tables and Databases

case ets:lookup(Tab, Key) of
[1 ->
ok;
[|.1->
ets:delete(Tab, Key)
end,

Fetching Data
Do not fetch data that you already have.

Consider that you have a module that handles the abstract data type Per son. You export the interface
function print_person/ 1, which uses the interna functions print_nane/1, print_age/1, and
print_occupation/1.

If thefunction pri nt _nane/ 1, and so on, had been interface functions, the situation would have been different,
as you do not want the user of the interface to know about the internal data representation.

DO

%%% Interface function
print person(PersonId) ->
%% Look up the person in the named table person,
case ets:lookup(person, PersonId) of
[Person] ->
print name(Person),
print age(Person),
print occupation(Person);
[1 -»
io:format("No person with ID = ~p~n", [PersonID])
end.

%%% Internal functions
print name(Person) ->
io:format("No person ~p~n", [Person#person.name]).

print age(Person) ->
io:format("No person ~p~n", [Person#person.age]).

print occupation(Person) ->
io:format("No person ~p~n", [Person#person.occupation]).

DO NOT

244 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8 Tables and Databases

%%% Interface function

print person(PersonId) ->
%% Look up the person in the named table person,
case ets:lookup(person, PersonId) of

[Person]

->

print name(PersonID),
print _age(PersonID),
print occupation(PersonID);

[1 ->

io:format("No person with ID = ~p~n", [PersonID])

end.

%%% Internal functionss
print name(PersonID) ->

[Person]

ets:lookup(person, PersonId),

io:format("No person ~p~n", [Person#person.name]).

print_age(PersonID) ->

[Person]

ets:lookup(person, PersonId),

io:format("No person ~p~n", [Person#person.age]).

print_occupation(PersonID) ->

[Person]

ets:lookup(person, PersonId),
io:format("No person ~p~n",

Non-Persistent Database Storage

For non-persistent database storage, prefer Ets tables over Mnesia | ocal _cont ent tables. Even the Mnesia
dirty_wit e operationscarry afixed overhead compared to Etswrites. Mnesiamust check if thetableisreplicated
or has indices, thisinvolves at least one Ets lookup for each di rty_wri t e. Thus, Etswritesis always faster than

Mnesiawrites.

tab2list

[Person#person.occupation]).

Assuming an Etstable that usesi dno as key and contains the following:

[#person{idno
#person{idno
#person{idno
#person{idno

, name
, name
, name
, name

A WN -

"Adam", age
"Bryan", age
"Bryan", age
"Carl", age

31, occupation
31, occupation
35, occupation
25, occupation

"mailman"},
"cashier"},
"banker"},

"mailman"}]

If you must return all data stored in the Etstable, you can use et s: t ab2l i st/ 1. However, usually you are only
interested in a subset of the information in which caseet s: t ab2l i st/ 1 isexpensive. If you only want to extract

one field from each record, for example, the age of every person, then:

DO

ets:select(Tab, [{ #person{idno="'_"',

DO NOT

[1,
['$1'1}D),

name="'_"',
age="'$1",
occupation = ' '},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 245

8.8 Tables and Databases

TabList = ets:tab2list(Tab),
lists:map(fun(X) -> X#person.age end, TabList),

If you are only interested in the age of all persons named "Bryan”, then:
DO

ets:select(Tab, [{ #person{idno='_",
name="Bryan",
age='$1",
occupation = ' '},
[1,
['$1'1}1),

DO NOT

TabList = ets:tab2list(Tab),
lists:foldl(fun(X, Acc) -> case X#person.name of

"Bryan" ->
[X#person.age|Accl];
->
~ Acc
end
end, [], TablList),
REALLY DO NOT
TabList = ets:tab2list(Tab),
BryanList = lists:filter(fun(X) -> X#person.name == "Bryan" end,

TabList),
lists:map(fun(X) -> X#person.age end, BryanlList),

If you need al information stored in the Ets table about persons named "Bryan”, then:
DO

ets:select(Tab, [{#person{idno='_"',
name="Bryan",

age='_"',
occupation = '_'}, [1, ['$_"1}1),

DO NOT

TabList = ets:tab2list(Tab),
lists:filter(fun(X) -> X#person.name == "Bryan" end, TablList),

246 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8 Tables and Databases

Ordered_set Tables

If the data in the table is to be accessed so that the order of the keys in the table is significant, the table type
ordered_set can be used instead of the more usual set table type. An or der ed_set isaways traversed in
Erlang term order regarding the key field so that the return values from functions such assel ect , mat ch_obj ect,
andf ol dl areordered by the key values. Traversing an or der ed_set withthefi r st and next operationsalso
returns the keys ordered.

An or der ed_set only guarantees that objects are processed in key order. Results from functions such as
et s: sel ect/ 2 appear in key order even if the key is not included in the result.

8.8.2 Ets-Specific

Using Keys of Ets Table

An Etstable is a single-key table (either a hash table or a tree ordered by the key) and is to be used as one. In other
words, use the key to look up things whenever possible. A lookup by aknown key inaset Etstableisconstant and
foranor der ed_set EtstableitisO(logN). A key lookup is always preferable to a call where the whole table has
to be scanned. In the previous examples, the field i dno isthe key of the table and all lookups where only the name
is known result in a complete scan of the (possibly large) table for a matching result.

A simple solution would be to use the nane field asthe key instead of thei dno field, but that would cause problems
if the names were not unique. A more general solution would be to create a second table with nane askey andi dno
as data, that is, to index (invert) the table regarding the nane field. Clearly, the second table would have to be kept
consistent with the master table. Mnesiacan do thisfor you, but ahome brew index tabl e can be very efficient compared
to the overhead involved in using Mnesia.

An index table for the table in the previous examples would have to be a bag (as keys would appear more than once)
and can have the following contents:

[#index_entry{name="Adam", idno=1},
#index_entry{name="Bryan", idno=2},
#index_entry{name="Bryan", idno=3},
#index entry{name="Carl", idno=4}]

Given thisindex table, alookup of the age fields for all persons named "Bryan" can be done as follows:

MatchingIDs = ets:lookup(IndexTable,"Bryan"),
lists:map(fun(#index_entry{idno = ID}) ->
[#person{age = Age}] = ets:lookup(PersonTable, ID),
Age
end,
MatchingIDs),

Notice that this code never uses et s: mat ch/ 2 but instead uses the et s: | ookup/ 2 call. Thel i sts: map/ 2
call is only used to traverse the i dnos matching the name "Bryan" in the table; thus the number of lookups in the
master table is minimized.

K eeping an index tabl e introduces some overhead when inserting recordsin the table. The number of operations gained
from the table must therefore be compared against the number of operations inserting objects in the table. However,
notice that the gain is significant when the key can be used to lookup elements.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 247

8.9 Processes

8.8.3 Mnesia-Specific

Secondary Index

If you frequently do alookup on afield that is not the key of the table, you lose performance using "mnesia:select/
match_object" as this function traverses the whole table. You can create a secondary index instead and use
"mnesiaiindex_read" to get faster access, however this requires more memory.

Example

-record(person, {idno, name, age, occupation}).

{atomic, ok} =
mnesia:create table(person, [{index, [#person.age]l},
{attributes,
record info(fields, person)}l),
{atomic, ok} = mnesia:add table index(person, age),

PersonsAge42 =
mnesia:dirty index read(person, 42, #person.age),

Transactions

Using transactions is a way to guarantee that the distributed Mnesia database remains consistent, even when many
different processes updateit in parallel. However, if you have real-time requirementsit isrecommendedtousedi rt y
operations instead of transactions. When using di r t y operations, you lose the consistency guarantee; thisis usually
solved by only letting one process update the table. Other processes must send update requests to that process.

Example

% Using transaction
Fun = fun() ->
[mnesia:read({Table, Key}),
mnesia:read({Table2, Key2})]
end,

{atomic, [Resultl, Result2]} = mnesia:transaction(Fun),
% Same thing using dirty operations

Resultl
Result2

mnesia:dirty read({Table, Key}),
mnesia:dirty read({Table2, Key2}),

8.9 Processes

8.9.1 Creating an Erlang Process
An Erlang processis lightweight compared to threads and processes in operating systems.
A newly spawned Erlang process uses 326 words of memory. The size can be found as follows:

248 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.9 Processes

Erlang/0TP 24 [erts-12.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]

Eshell V5.6 (abort with ~G)

1> Fun = fun() -> receive after infinity -> ok end end.
#Fun<...>

2> { ,Bytes} = process info(spawn(Fun), memory).
{memory, 1232}

3> Bytes div erlang:system info(wordsize).

309

The size includes 233 words for the heap area (which includes the stack). The garbage collector increases the heap
as needed.

The main (outer) loop for a process must be tail-recursive. Otherwise, the stack grows until the process terminates.
DO NOT

loop() ->
receive
{sys, Msg} ->
handle sys msg(Msg),
Loop();
{From, Msg} ->
Reply = handle msg(Msg),
From ! Reply,
Loop ()
end,
io:format("Message is processed~n", []).

Thecall toi o: f or mat / 2 will never be executed, but a return address will still be pushed to the stack each time
| oop/ 0 iscaled recursively. The correct tail-recursive version of the function looks as follows:

DO

loop() ->
receive
{sys, Msg} ->
handle sys msg(Msg),
loop();
{From, Msg} ->
Reply = handle msg(Msg),
From ! Reply,
Loop()
end.

Initial Heap Size

The default initial heap size of 233 words is quite conservative to support Erlang systems with hundreds of thousands
or even millions of processes. The garbage collector grows and shrinks the heap as needed.

In a system that use comparatively few processes, performance might be improved by increasing the minimum heap
size using either the +h option for erl or on a process-per-process basis using the mi n_heap_si ze option for
Spawn_opt/4.

The gain istwofold:

« Although the garbage collector grows the heap, it grows it step-by-step, which is more costly than directly
establishing alarger heap when the process is spawned.

» The garbage collector can also shrink the heap if it is much larger than the amount of data stored on it; setting
the minimum heap size prevents that.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 249

8.9 Processes

The emulator probably uses more memory, and because garbage collections occur less frequently, huge binaries
can be kept much longer.

In systemswith many processes, computation tasksthat run for ashort time can be spawned off into anew processwith
a higher minimum heap size. When the process is done, it sends the result of the computation to another process and
terminates. If the minimum heap size is calcul ated properly, the process might not have to do any garbage collections
at all. Thisoptimization isnot to be attempted without proper measur ements.

8.9.2 Sending Messages

All datain messages sent between Erlang processes is copied, except for refc binaries and literals on the same Erlang
node.

When amessage is sent to a process on another Erlang node, it isfirst encoded to the Erlang External Format before
being sent through a TCP/IP socket. The receiving Erlang node decodes the message and distributes it to the correct
process.

8.9.3 Receiving messages

The cost of receiving messages depends on how complicated the r ecei ve expression is. A simple expression that
matches any message is very cheap because it retrieves the first message in the message queue:

DO

receive
Message -> handle msg(Message)
end.

However, thisis not always convenient: we can receive a message that we do not know how to handle at this point,
so it is common to only match the messages we expect:

receive
{Tag, Message} -> handle msg(Message)
end.

While this is convenient it means that the entire message queue must be searched until it finds a matching message.
Thisis very expensive for processes with long message queues, so we have added an optimization for the common
case of sending arequest and waiting for a response shortly after:

DO

MRef = monitor(process, Process),
Process ! {self(), MRef, Request},
receive
{MRef, Reply} ->
erlang:demonitor(MRef, [flush]),
handle reply(Reply);
{'DOWN', MRef, , , Reason} ->
handle error(Reason)
end.

Since the compiler knows that the reference created by noni t or / 2 cannot exist beforethe call (sinceitisaglobally
unique identifier), and that the r ecei ve only matches messages that contain said reference, it will tell the emulator
to search only the messages that arrived after the call tononi t or/ 2.

The above is a simple example where one is but guaranteed that the optimization will take, but what about more
complicated code?

250 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.9 Processes

Option recv_opt_info
Usether ecv_opt _i nf o option to have the compiler print information about receive optimizations. It can be given

either to the compiler or er | c:

erlc +recv_opt info Mod.erl

or passed through an environment variable:

export ERL COMPILER OPTIONS=recv opt info

Noticethatr ecv_opt _i nf o isnot meant to be apermanent option added toyour Makef i | es, because all messages
that it generates cannot be eliminated. Therefore, passing the option through the environment isin most cases the most

practical approach.

The warnings look as follows:

efficiency guide.
efficiency guide.
efficiency guide.
efficiency guide.
efficiency guide.
efficiency guide.

erl:
erl:
erl:
erl:
erl:
erl:

194:
200:
206:
208:
219:
222:

Warning:
Warning:
Warning:
Warning:
Warning:
Warning:

INFO: receive matches any message, this is always fast

NOT OPTIMIZED: all clauses do not match a suitable reference

OPTIMIZED: reference used to mark a message queue position

OPTIMIZED: all clauses match reference created by monitor/2 at efficienc)
INFO: passing reference created by make ref/0 at efficiency guide.erl:21¢
OPTIMIZED: all clauses match reference in function parameter 1

To make it clearer exactly what code the warnings refer to, the warnings in the following examples are inserted as
comments after the clause they refer to, for example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 251

8.9 Processes

%% DO

simple receive() ->
%% efficiency guide.erl:194: Warning: INFO: not a selective receive, this is always fast
receive

Message -> handle _msg(Message)

end.

%% DO NOT, unless Tag is known to be a suitable reference: see

)
676

cross_function receive/0 further down.

selective receive(Tag, Message) ->

)

5

]

efficiency guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference
receive

{Tag, Message} -> handle msg(Message)

end.

oP
o°

DO

optimized receive(Process, Request) ->
%% efficiency guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position

o°

C

MRef = monitor(process, Process),
Process ! {self(), MRef, Request},

%% efficiency guide.erl:208: Warning:

receive
{MRef, Reply} ->
erlang:demonitor(MRef, [flushl]),
handle reply(Reply);

{'DOWN', MRef, , , Reason} ->
handle error(Reason)
end.

% DO

ross_function receive() ->

%% efficiency guide.erl:218: Warning:

Ref = make ref(),

%% efficiency guide.erl:219: Warning:

cross_function receive(Ref).

cross_function receive(Ref) ->

%% efficiency guide.erl:222: Warning:

receive

OPTIMIZED: matches reference created by monitor/2 at efficiency guide

OPTIMIZED: reference used to mark a message queue position

INFO: passing reference created by make ref/0 at efficiency guide.er]

OPTIMIZED: all clauses match reference in function parameter 1

{Ref, Message} -> handle msg(Message)

end.

8.9.4 Literal Pool

Constant Erlang terms (hereafter called literals) are kept in literal pools; each loaded module has its own pool. The
following function does not build the tuple every timeit is called (only to have it discarded the next time the garbage
collector was run), but the tuple is located in the modul€'s literal pool:

DO

days _in_month(M) ->
element (M, {31,28,31,30,31,30,31,31,30,31,30,31}).

If aliteral, or aterm that contains a literal, is inserted into an Ets table, it is copied. The reason is that the module

containing the literal can be unloaded in the future.

When aliteral is sent to another process, it is not copied. When amodule holding aliteral is unloaded, the literal will
be copied to the heap of all processes that hold referencesto that literal.

There also exists aglobal literal pool that is managed by the persistent_term module.

252 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.9 Processes

By default, 1 GB of virtual address space is reserved for al literal pools (in BEAM code and persistent terms). The
amount of virtual address space reserved for literals can be changed by using the +M scs opt i on when starting
the emulator.

Here is an example how the reserved virtual address space for literals can beraised to 2 GB (2048 MB):

erl +MIscs 2048

8.9.5 Loss of Sharing

An Erlang term can have shared subterms. Here is asimple example:
{SubTerm, SubTerm}

Shared subterms are not preserved in the following cases:

e When aterm is sent to another process
e When aterm is passed as the initial process argumentsin the spawn call
« Whenatermisstored in an Etstable

That is an optimization. Most applications do not send messages with shared subterms.

The following example shows how a shared subterm can be created:

kilo byte() ->
kilo_byte(10, [42]).
kilo byte(0, Acc) ->
Acc;
kilo byte(N, Acc) ->
kilo byte(N-1, [Acc|Acc]).

kil o_byte/ 1 createsadeep list. If | i st _t o_bi nary/ 1 is called, the deep list can be converted to a binary
of 1024 bytes:

1> byte size(list to binary(efficiency guide:kilo byte())).
1024
Usingtheerts_debug: si ze/ 1 BIF, it can be seen that the deep list only requires 22 words of heap space:
2> erts debug:size(efficiency gquide:kilo byte()).
22

Using theerts_debug: fl at _si ze/ 1 BIF, the size of the deep list can be calculated if sharing is ignored. It
becomes the size of the list when it has been sent to another process or stored in an Ets table:

3> erts debug:flat size(efficiency guide:kilo byte()).
4094

It can be verified that sharing will be lost if the datais inserted into an Etstable:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 253

8.10 Drivers

4> T = ets:new(tab, []).
#Ref<0.1662103692.2407923716.214181>
5> ets:insert(T, {key,efficiency guide:kilo byte()}).

true

6> erts _debug:size(element(2, hd(ets:lookup(T, key)))).

4094

7> erts debug:flat size(element(2, hd(ets:lookup(T, key)))).
4094

When the data has passed through an Etstable, ert s_debug: si ze/ 1anderts_debug: fl at _si ze/ 1 return
the same value. Sharing has been lost.

It is possible to build an experimental variant of the runtime system that will preserve sharing when copying terms
by giving the - - enabl e- shari ng- pr eser vi ng optiontotheconf i gur e script.

8.9.6 SMP Emulator

The emulator takes advantage of a multi-core or multi-CPU computer by running several Erlang scheduler threads
(typicaly, the same as the number of cores).

To gain performance from a multi-core computer, your application must have more than one runnable Erlang
process most of the time. Otherwise, the Erlang emulator can still only run one Erlang process at the time.

Benchmarks that appear to be concurrent are often sequential. The estone benchmark, for example, is entirely
sequential. So is the most common implementation of the "ring benchmark™; usually one process is active, while the
otherswaitinar ecei ve statement.

8.10 Drivers

This section provides a brief overview on how to write efficient drivers.
It is assumed that you have a good understanding of drivers.

8.10.1 Drivers and Concurrency
The runtime system always takes alock before running any code in adriver.

By default, that lock is at the driver level, that is, if several ports have been opened to the same driver, only code for
one port at the same time can be running.

A driver can be configured to have one lock for each port instead.

If adriver is used in a functional way (that is, holds no state, but only does some heavy calculation and returns a
result), several ports with registered names can be opened beforehand, and the port to be used can be chosen based
on the scheduler ID asfollows:

-define(PORT _NAMES(),

{some _driver 01, some driver 02, some driver 03, some driver 04,
some _driver 05, some driver 06, some driver 07, some driver 08,
some _driver 09, some driver 10, some driver 11, some driver 12,
some _driver 13, some driver 14, some driver 15, some driver 16}).

client port() ->
element(erlang:system info(scheduler id) rem tuple size(?PORT NAMES()) + 1,
?PORT_NAMES()) .

Aslong asthere are no more than 16 schedulers, there will never be any lock contention on the port lock for the driver.

254 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.11 Advanced

8.10.2 Avoiding Copying Binaries When Calling a Driver
There are basically two ways to avoid copying a binary that is sent to adriver:

» If the Dat a argument for port_control/3 is a binary, the driver will be passed a pointer to the contents of the
binary and the binary will not be copied. If the Dat a argument isaniiolist (list of binaries and lists), al binaries
intheiolist will be copied.

Therefore, if you want to send both a pre-existing binary and some extra data to a driver without copying the
binary, you must call port _contr ol / 3 twice; once with the binary and once with the extra data. However,
that will only work if there is only one process communicating with the port (because otherwise another process
can cal the driver in-between the calls).

e Implement an out put v callback (instead of an out put callback) in the driver. If adriver has an out put v
callback, refc binaries passed in aniolist in the Dat a argument for port_command/2 will be passed as references
to the driver.

8.10.3 Returning Small Binaries from a Driver

The runtime system can represent binaries up to 64 bytes as heap binaries. They are always copied when sent in
messages, but they require less memory if they are not sent to another process and garbage collection is cheaper.

If you know that the binaries you return are always small, you are advised to use driver API calls that do not require
a pre-allocated binary, for example, driver_output() or erl_drv_output_term(), using the ERL_DRV_BUF2BI NARY
format, to allow the runtime to construct a heap binary.

8.10.4 Returning Large Binaries without Copying from a Driver

To avoid copying data when a large binary is sent or returned from the driver to an Erlang process, the driver must
first allocate the binary and then send it to an Erlang process in some way.

Usedriver_alloc_binary() to alocate a binary.
There are several waysto send abinary created with dri ver _al | oc_bi nary():

 Fromthecont r ol calback, abinary can be returned if set_port_control_flags() has been called with the flag
value PORT_CONTROL_FLAG BI NARY.

e A single binary can be sent with driver_output_binary().

e Usingerl_drv_output_term() or erl_drv_send term(), abinary can be included in an Erlang term.

8.11 Advanced
8.11.1 Memory

A good start when programming efficiently isto know how much memory different data types and operations require.
It isimplementation-dependent how much memory the Erlang data types and other items consume, but the following
table shows some figuresfor theer t s- 8. 0 system in OTP 19.0.

Theunit of measurement is memory words. There exists both a 32-bit and a 64-bit implementation. A word istherefore
4 bytes or 8 bytes, respectively.

Data Type Memory Size
1 word.

Small integer On 32-hit architectures: -134217729 < i < 134217728
(28 hits).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 255

8.11 Advanced

On 64-bit architectures. -576460752303423489 < i <
576460752303423488 (60 hits).

Large integer 3..N words.
1 word.
An atom refers into an atom table, which aso consumes
Atom memory. The atom text is stored once for each unique
atom in this table. The atom tableis not garbage-
collected.
Float On 32-hit architectures: 4 words.
On 64-hit architectures: 3 words.
Binary 3..6 words + data (can be shared).
List 1 word + 1 word per element + the size of each element.

String (is the same as alist of integers)

1 word + 2 words per character.

Tuple 2 words + the size of each element.

Small Map 5 words + the size of all keys and values.
Nx F words + the size of all keys and values.
Nisthe number of keysin the Map.

Large Map (> 32 keys) F isasparsity factor that can vary between 1.6 and 1.8
due to the probabilistic nature of the internal HAMT
data structure.

1 word for aprocess identifier from the current local
node.
On 32-hit: 6 words for a process identifier from another

Pid node.

On 64-hit: 5 words for a process identifier from another
node.

A process identifier refersinto a process table and a
node table, which also consumes memory.

1 word for a port identifier from the current local node.

Port 5 words for a port identifier from another node.

A port identifier refersinto a port table and a node table,
which also consumes memory.

On 32-bit architectures: 4-7 words for areference from
the current local node, and 7-9 words for areference
from another node.

Reference

On 64-hit architectures: 4-6 words for areference from
the current local node, and 6-7 words for areference
from another node.

256 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.11 Advanced

A reference also refersinto more or less emulator
internal data structures which also consumes memory.
At aminimum it refersinto the node tables.

9..13 words + the size of environment.
Fun A funrefersinto afun table, which also consumes
memory.

Initially 768 words + the size of each element (6 words
Etstable + the size of Erlang data). The table grows when
necessary.

338 words when spawned, including a heap of 233

Erlang process words.

Table 11.1: Memory Size of Different Data Types

8.11.2 System Limits

The Erlang language specification puts no limits on the number of processes, length of atoms, and so on. However,
for performance and memory saving reasons, there will always be limitsin a practical implementation of the Erlang
language and execution environment.

The maximum number of simultaneously alive Erlang
processes is by default 262,144. Thislimit can be
Processes configured at startup. For more information, see the
+P command-lineflagintheer | (1) manual pagein
ERTS.

A remote node Y must be known to node X if there
exists any pids, ports, references, or funs (Erlang data
types) fromY on X, or if X and Y are connected. The
maximum number of remote nodes simultaneously/ever
known to anode is limited by the maximum number of
atoms available for node names. All data concerning
remote nodes, except for the node name atom, are
garbage-collected.

Known nodes

The maximum number of simultaneously connected
nodesis limited by either the maximum number of
Connected nodes simultaneously known remote nodes, the maximum
number of (Erlang) ports available, or the maximum
number of sockets available.

Charactersin an atom 255.

By default, the maximum number of atomsis 1,048,576.

Atoms Thislimit can be raised or lowered using the +t option.

The maximum number of elementsin atupleis

Elementsin atuple 16,777,215 (24-bit unsigned integer).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 257

8.11 Advanced

Size of binary

In the 32-bit implementation of Erlang, 536,870,911
bytesisthe largest binary that can be constructed

or matched using the bit syntax. In the 64-

bit implementation, the maximum size is
2,305,843,009,213,693,951 bytes. If the limit

is exceeded, bit syntax construction fails with a
system | i mt exception, while any attempt to
match a binary that istoo large fails. Thislimitis
enforced starting in R11B-4.

In earlier Erlang/OTP releases, operations on too large
binariesin general either fail or give incorrect results.
In future rel eases, other operations that create binaries
(suchaslist_to_binary/ 1) will probably also
enforce the same limit.

Total amount of data allocated by an Erlang node

The Erlang runtime system can use the complete 32-bit
(or 64-hit) address space, but the operating system often
limits a single process to use |ess than that.

Length of anode name

An Erlang node name has the form host@shortname
or host@longname. The node name is used as an atom
within the system, so the maximum size of 255 holds
aso for the node name.

Open ports

The maximum number of simultaneously open Erlang
portsis often by default 16,384. Thislimit can be
configured at startup. For more information, see the
+Qcommand-lineflagintheer| (1) manual pagein
ERTS.

Open files and sockets

The maximum number of simultaneously open files and
sockets depends on the maximum number of Erlang
ports available, as well as on operating system-specific
settings and limits.

Number of argumentsto afunction or fun

255

Unique References on a Runtime System Instance

Each scheduler thread has its own set of references,
and all other threads have a shared set of references.
Each set of references consist of 2## - 1 unique
references. That is, the total amount of unique
references that can be produced on a runtime system
instanceis (NoSchedul ers + 1) x (2## -
1).

If ascheduler thread create a new reference each nano
second, references will at earliest be reused after more
than 584 years. That is, for the foreseeable future they
are unique enough.

Unique Integers on a Runtime System Instance

There are two types of unique integers both created
using the erlang:unique_integer() BIF:

258 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.12 Profiling

1. Unique integers created with the monot oni ¢
modifier consist of aset of 2## - 1 unique integers.
2. Unique integers created without the monot oni ¢
modifier consist of aset of 2## - 1 uniqueintegers
per scheduler thread and a set of 2## - 1 unique
integers shared by other threads. That is, the total
amount of unique integers without the nonot oni ¢
modifier is(NoSchedul ers + 1) x (2## -
1).

If aunique integer is created each nano second, unique
integerswill at earliest be reused after more than 584
years. That is, for the foreseeabl e future they are unique
enough.

Table 11.2: System Limits

8.12 Profiling
8.12.1 Do Not Guess About Performance - Profile

Even experienced software developers often guess wrong about where the performance bottlenecks are in their
programs. Therefore, profile your program to see where the performance bottlenecks are and concentrate on optimizing
them.

Erlang/OTP contains severa tools to help finding bottlenecks:

« fprof providesthe most detailed information about where the program time is spent, but it significantly slows
down the program it profiles.

* eprof providestimeinformation of each function used in the program. No call graph is produced, but epr of
has considerably lessimpact on the program it profiles.
If the program is too large to be profiled by f pr of or epr of , cpr of can be used to locate code parts that are
to be more thoroughly profiled using f pr of or epr of .

» cprof isthe most lightweight tool, but it only provides execution counts on a function basis (for all processes,
not per process).

« dbg isthe generic erlang tracing frontend. By using thet i mest anp or cpu_t i nest anp options it can be
used to time how long function callsin alive system take.

* | cnt isusedtofind contention pointsin the Erlang Run-Time System's internal locking mechanisms. It is useful
when looking for bottlenecks in interaction between process, port, ets tables and other entities that can be run
inparallel.

The tools are further described in Tools.
There are also several open source tools outside of Erlang/OTP that can be used to help profiling. Some of them are:

e erlgrind can be used to visualize fprof datain kcachegrind.
+ eflameisan alternative to fprof that displays the profiling output as a flamegraph.

« reconisacoallection of Erlang profiling and debugging tools. Thistool comes with an accompanying E-book
caled Erlangin Anger.

8.12.2 Memory profiling

eheap alloc: Cannot allocate 1234567890 bytes of memory (of type "heap").

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 259

href
href
href
href

8.12 Profiling

The above slogan is one of the more common reasons for Erlang to terminate. For unknown reasons the Erlang Run-
Time System failed to alocate memory to use. When this happens a crash dump is generated that containsinformation
about the state of the system as it ran out of memory. Use the cr ashdunp_vi ewer to get aview of the memory
being used. Look for processes with large heaps or many messages, large ets tables, etc.

When looking at memory usage in a running system the most basic function to get information from is
erl ang: menory() . It returns the current memory usage of the system. i nst r unent (3) can be used to get a
more detailed breakdown of where memory is used.

Processes, ports and ets tables can then be inspected using their respective info functions, i.e.
erl ang: process_info/2 ,erlang:port_info/2 andets:info/1.

Sometimesthe system can enter astatewherethereported memory fromer | ang: nenor y(t ot al) isvery different
from the memory reported by the OS. This can be because of internal fragmentation within the Erlang Run-Time
System. Data about how memory is allocated can beretrieved using er | ang: system i nfo(al | ocat or).The
data you get from that function is very raw and not very pleasant to read. recon_alloc can be used to extract useful
information from system_info statistics counters.

8.12.3 Large Systems

For alargesystem, it can beinteresting to run profiling on asimulated and limited scenario to start with. But bottlenecks
have atendency to appear or cause problems only when many things are going on at the same time, and when many
nodes are involved. Therefore, it is also desirable to run profiling in a system test plant on areal target system.

For alarge system, you do not want to run the profiling tools on the whole system. Instead you want to concentrate
on central processes and modules, which account for a big part of the execution.

There are also some tools that can be used to get a view of the whole system with more or less overhead.
e observer isaGuUI tool that can connect to remote nodes and display a variety of information about the
running system.

* et opisacommand linetool that can connect to remote nodes and display information similar to what the
UNIX tool top shows.

e msacc alowsthe user to get aview of what the Erlang Run-Time system is spending its time doing. Has a
very low overhead, which makes it useful to run in heavily loaded systems to get some idea of where to start
doing more granular profiling.

8.12.4 What to Look For

When analyzing the result file from the profiling activity, look for functions that are called many times and have a
long "own" execution time (time excluding calls to other functions). Functions that are called alot of times can also
be interesting, as even small things can add up to quite a bit if repeated often. Also ask yourself what you can do to
reduce thistime. The following are appropriate types of questionsto ask yourself:

* Isit possible to reduce the number of times the function is called?

e Canany test be run less often if the order of testsis changed?

e Can any redundant tests be removed?

» Doesany calculated expression give the same result each time?

» Arethere other waysto do this that are equivalent and more efficient?

* Can another internal data representation be used to make things more efficient?

These questions are not always trivial to answer. Some benchmarks might be needed to back up your theory and to
avoid making things slower if your theory iswrong. For details, see Benchmarking.

260 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

8.12 Profiling

8.12.5 Tools
fprof

f pr of measures the execution time for each function, both own time, that is, how much time a function has used
for its own execution, and accumulated time, that is, including called functions. The values are displayed per process.
Y ou also get to know how many times each function has been called.

f pr of isbased on trace to file to minimize runtime performance impact. Using f pr of isjust a matter of calling a
few library functions, see the fprof manual pagein Tools.
eprof

epr of isbased onthe Erlangtrace_i nf o BIFs. epr of shows how much time has been used by each process,
and in which function calls this time has been spent. Time is shown as a percentage of total time and absolute time.
For more information, see the eprof manual pagein Toals.

cprof

cpr of is something in between f pr of and cover regarding features. It counts how many times each function is
called when the program is run, on a per module basis. cpr of has alow performance degradation effect (compared
with f pr of) and does not need to recompile any modules to profile (compared with cover). For more information,
see the cprof manual pagein Tools.

Tool Summary

! Effects on Records Records Records
Size of Program . Records
Tool Results . Number of |Execution Garbage
Result Execution : Called by 7
X Calls Time Collection
Time
Per process N
f pr of to screen/ Large Significant Yes Total and Yes Yes
file slowdown own
Per process! Small
epr of functionto | Medium Yes Only total No No
: slowdown
screenffile
Per module Small
cpr of to caller Small Jowdown Yes No No No

Table 12.1: Tool Summary

dbg

dbg is a generic Erlang trace tool. By using the ti mest anp or cpu_t i nest anp options it can be used as a
precision instrument to profile how long time afunction call takesfor aspecific process. This can be very useful when
trying to understand wheretimeis spent in aheavily loaded system asit is possible to limit the scope of what is profiled
to be very small. For more information, see the dbg manual page in Runtime Tools.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 261

8.13 Retired Myths

Icnt

| cnt isused to profile interactions in between entities that run in parallel. For example if you have a process that all
other processes in the system needs to interact with (maybe it has some global configuration), then| cnt can be used
to figure out if the interaction with that processis a problem.

In the Erlang Run-time System entities are only run in parallel when there are multiple schedulers. Therefore | cnt
will show more contention points (and thus be more useful) on systems using many schedulers on many cores.

For more information, see the Icnt manual page in Tools.

8.12.6 Benchmarking

The main purpose of benchmarking isto find out which implementation of a given algorithm or function isthe fastest.
Benchmarking isfar from an exact science. Today's operating systems generally run background tasksthat are difficult
to turn off. Caches and multiple CPU cores do not facilitate benchmarking. It would be best to run UNIX computers
in single-user mode when benchmarking, but that isinconvenient to say the least for casual testing.

Benchmarks can measure wall-clock time or CPU time.

e timer:tc/3 measures wall-clock time. The advantage with wall-clock time isthat 1/O, swapping, and other
activitiesin the operating system kernel are included in the measurements. The disadvantage is that the
measurements vary alot. Usually it is best to run the benchmark several times and note the shortest time, which
isto be the minimum time that is possible to achieve under the best of circumstances.

o dtatistics/1 with argument r unt i me measures CPU time spent in the Erlang virtual machine. The advantage
with CPU time is that the results are more consistent from run to run. The disadvantage is that the time spent
in the operating system kernel (such as swapping and I/O) is not included. Therefore, measuring CPU time is
misleading if any /O (file or socket) isinvolved.

It is probably a good ideato do both wall-clock measurements and CPU time measurements.
Somefinal advice:

e Thegranularity of both measurement types can be high. Therefore, ensure that each individual measurement
lasts for at least several seconds.

* Tomakethetest fair, each new test runisto run in its own, newly created Erlang process. Otherwise, if al tests
run in the same process, the later tests start out with larger heap sizes and therefore probably do fewer garbage
collections. Also consider restarting the Erlang emulator between each test.

» Do not assume that the fastest implementation of a given algorithm on computer architecture X is also the
fastest on computer architecture Y.

8.13 Retired Myths

We bdlive that the truth finally has caught with the following, retired myths.

8.13.1 Myth: Funs are Slow

Funs used to be very slow, slower than appl y/ 3. Originally, funs were implemented using nothing more than
compiler trickery, ordinary tuples, appl y/ 3, and agreat deal of ingenuity.

But that is history. Funswas given its own data type in R6B and was further optimized in R7B. Now the cost for afun
call falsroughly between the cost for acall to alocal function and appl y/ 3.

8.13.2 Myth: List Comprehensions are Slow

List comprehensions used to be implemented using funs, and in the old days funs were indeed slow.

262 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.13 Retired Myths

Nowadays, the compiler rewrites list comprehensions into an ordinary recursive function. Using a tail-recursive
function with a reverse at the end would be till faster. Or would it? That leads us to the myth that tail-recursive
functions are faster than body-recursive functions.

8.13.3 Myth: List subtraction ("--" operator) is slow

List subtraction used to have arun-time complexity proportional to the product of the length of its operands, so it was
extremely slow when both lists were long.

As of OTP 22 the run-time complexity is "n log n" and the operation will complete quickly even when both lists are
very long. Infact, it isfaster and usesless memory than the commonly used workaround to convert both liststo ordered
sets before subtracting them with or dset s: subtract/ 2.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 263

9.1 Introduction

9 Interoperability Tutorial

9.1 Introduction

This section informs on interoperability, that is, information exchange, between Erlang and other programming
languages. The included examples mainly treat interoperability between Erlang and C.

9.1.1 Purpose

The purpose of this tutorial is to describe different interoperability mechanisms that can be used when integrating a
program written in Erlang with a program written in another programming language, from the Erlang programmer's
perspective.

9.1.2 Prerequisites

It is assumed that you are a skilled Erlang programmer, familiar with concepts such as Erlang data types, processes,
messages, and error handling.

Toillustrate the interoperability principles, C programsrunning in aUNIX environment have been used. It is assumed
that you have enough knowledge to apply these principles to the relevant programming languages and platforms.

For readability, the example code is kept as ssmple as possible. For example, it does not include error handling,
which might be vital in areal-life system.

9.2 Overview

9.2.1 Built-In Mechanisms

Two interoperability mechanisms are built into the Erlang runtime system, distributed Erlang and ports. A variation
of portsislinked-in drivers.

Distributed Erlang

An Erlang runtime system ismade adistributed Erlang node by giving it aname. A distributed Erlang node can connect
to, and monitor, other nodes. It can also spawn processes at other nodes. M essage passing and error handling between
processes at different nodes are transparent. A number of useful STDLIB modules are available in adistributed Erlang
system. For example, gl obal , which provides global name registration. The distribution mechanism isimplemented
using TCP/IP sockets.

When to use: Distributed Erlang is primarily used for Erlang-Erlang communication. It can aso be used for
communication between Erlang and C, if the C program isimplemented as a C node, see C and Java Libraries.

Whereto read more: Distributed Erlang and some distributed programming techniques are described in the Erlang
book.

For more information, see Distributed Programming.
Relevant manual pages are the following:
» erlang manual page in ERTS (describes the BIFS)

264 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.2 Overview

e globa manual pagein Kernel

e net_adm manual pagein Kernel
e pgmanual pagein Kernel

e rpcmanual pagein Kernel

e pool manual pagein STDLIB

e davemanual pagein STDLIB

Ports and Linked-In Drivers

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. The ports
provide a byte-oriented interface to an external program. When a port is created, Erlang can communicate with it by
sending and receiving lists of bytes (not Erlang terms). This meansthat the programmer might haveto invent asuitable
encoding and decoding scheme.

The implementation of the port mechanism depends on the platform. For UNIX, pipes are used and the external
program is assumed to read from standard input and write to standard output. The external program can be written
in any programming language as long as it can handle the interprocess communication mechanism with which the
port isimplemented.

The external program resides in another OS process than the Erlang runtime system. In some cases this is not
acceptable. Consider, for example, driverswith very hard timerequirements. It istherefore possible to write aprogram
in C according to certain principles, and dynamically link it to the Erlang runtime system. Thisis called a linked-
indriver.

When to use: Ports can be used for all kinds of interoperability situations where the Erlang program and the other
program runs on the same machine. Programming is fairly straight-forward.

Linked-in driversinvolveswriting certain call-back functionsin C. Thisrequires very good skills asthe codeislinked
to the Erlang runtime system.

‘ A faulty linked-in driver causes the entire Erlang runtime system to leak memory, hang, or crash.

Whereto read more: Ports are described in section "Miscellaneous Items' of the Erlang book. Linked-in drivers are
described in Appendix E.

TheBIF open_port/ 2 isdocumented in the erlang manual pagein ERTS.
For linked-in drivers, the programmer needsto read the erl_ddll manual pagein Kernel.
Examples: Port example in Ports.

9.2.2 C and Java Libraries

Erl_Interface

The program at the other side of a port is often a C program. To help the C programmer, the Erl_Interface library
has been developed

The Erlang external term format is a representation of an Erlang term as a sequence of bytes, that is, a binary.
Conversion between the two representations is done using the following BIFs:

Binary = term to binary(Term)
Term = binary to term(Binary)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 265

9.2 Overview

A port can be set to use binaries instead of lists of bytes. It is then not necessary to invent any encoding/decoding
scheme. Erl_Interface functions are used for unpacking the binary and convert it into a struct similar to an Erlang term.
Such a struct can be manipulated in different ways, be converted to the Erlang external format, and sent to Erlang.

When to use: In C code, in conjunction with Erlang binaries.

Wheretoread more: SeetheErlang Interface User's Guide, Command Reference, and Library Reference. In Erlang/
OTP R5B, and earlier versions, the information is part of the Kernel application.

Examples: Erl_Interface examplein Erl_Interface.

C Nodes

A Cprogram that usesthe Erl_Interface functionsfor setting up aconnection to, and communicating with, adistributed
Erlang nodeis called aC node, or ahidden node. The main advantage with a C node is that the communication from
the Erlang programmer's perspective is extremely easy, as the C program behaves as a distributed Erlang node.

When to use: C nodes can typically be used on device processors (as opposed to control processors) where C is a
better choice than Erlang due to memory limitations or application characteristics, or both.

Wheretoread more: Seetheei _connect part of the Erl_Interface documentation. The programmer also needsto
be familiar with TCP/IP sockets, see Sockets in Standard Protocols and Distributed Erlang in Built-In Mechanisms.

Example: C node example in C Nodes.

Jinterface

In Erlang/OTP R6B, alibrary similar to Erl_Interface for Javawas added called jinterface. It provides atool for Java
programs to communicate with Erlang nodes.

9.2.3 Standard Protocols

Sometimes communication between an Erlang program and another program using a standard protocol is desirable.
Erlang/OTP currently supports TCP/IP and UDP sockets: as follows:

« SNMP
. HTTP
« 1IOP(CORBA)

Using one of the latter three requires good knowledge about the protocol and is not covered by this tutorial. See the
SNMP, Inets, and Orber applications, respectively.
Sockets

Simply put, connection-oriented socket communication (TCP/IP) consists of an initiator socket ("server") started at a
certain host with a certain port number. A connector socket ("client"), which is aware of the initiator host name and
port number, can connect to it and data can be sent between them.

Connection-less socket communication (UDP) consistsof aninitiator socket at acertain host with acertain port number
and a connector socket sending datato it.

For a detailed description of the socket concept, refer to a suitable book about network programming. A suggestion
isUNIX Network Programming, Volume 1: Networking APIs - Socketsand XTI by W. Richard Stevens, |SBN:
013490012X.

In Erlang/OTP, access to TCP/IP and UDP sockets is provided by the modulesgen_t cp and gen_udp in Kernel.
Both are easy to use and do not require detailed knowledge about the socket concept.

When to use: For programs running on the same or on another machine than the Erlang program.
Whereto read more: Seethe gen_tcp and the gen_udp manual pagesin Kernel.

266 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 Problem Example

9.2.4 IC and CORBA

IC (Erlang IDL Compiler) isan interface generator that, given an IDL interface specification, automatically generates
stub code in Erlang, C, or Java. See the IC User's Guide and | C Reference Manual.

For details, see the corbarepository.

9.2.5 Old Applications

Two old applications are of interest regarding interoperability. Both have been replaced by |C and are mentioned here
for reference only:

¢ 1G - Removed from Erlang/OTP R6B.

IG (Interface Generator) automatically generated code for port or socket communication between an Erlang
program and a C program, given a C header file with certain keywords.

* Jive- Removed from Erlang/OTP R7B.
Jive provided a simple interface between an Erlang program and a Java program.

9.3 Problem Example

9.3.1 Description

A common interoperability situation is when you want to incorporate a piece of code, solving a complex problem,
in your Erlang program. Suppose for example, that you have the following C functions that you would like to call
from Erlang:

/* complex.c */
int foo(int x) {

return x+1;
)

int bar(int y) {
return y*2;
}
The functions are deliberately kept as simple as possible, for readability reasons.

From an Erlang perspective, it is preferable to be able to call f 0o and bar without having to bother about that they
are C functions:

% Erlang code

Res = complex:foo(X),

Here, the communication with C is hidden in the implementation of conpl ex. er | . In the following sections, it is
shown how this module can be implemented using the different interoperability mechanisms.

9.4 Ports

This section outlines an example of how to solve the example problem in the previous section by using a port.

The scenario isillustrated in the following figure:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 267

href

9.4 Ports

EETs

H Trorl

|:| 05 proceas

o Efangproceas

—* Communicabion

External program

Figure 4.1:

9.4.1 Erlang Program

All communication between Erlang and C must be established by creating the port. The Erlang process that creates
aport is said to be the connected process of the port. All communication to and from the port must go through the
connected process. If the connected process terminates, the port also terminates (and the external program, if it is

written properly).

Theport iscreated using the BIF open_por t / 2 with{ spawn, Ext Pr g} asthefirst argument. Thestring Ext Pr g
isthe name of the external program, including any command line arguments. The second argument isalist of options, in
thiscaseonly { packet , 2} . Thisoption saysthat a2 bytelength indicator isto be used to simplify the communication
between C and Erlang. The Erlang port automatically adds the length indicator, but this must be done explicitly in

the external C program.

The process is also set to trap exits, which enables detection of failure of the external program:

-module(complexl).
-export([start/1, init/1]).

start(ExtPrg) ->
spawn (?MODULE, init, [ExtPrgl).

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),
Port = open port({spawn, ExtPrg},
loop(Port).

Now conpl ex1: f oo/ 1 and conpl ex1: bar/ 1 can be implemented. Both send a message to the conpl ex

process and receive the following replies:

[{packet, 2}1),

Port Communication

268 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.4 Ports

foo(X) ->

call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

The conpl ex process does the following:

» Encodes the message into a sequence of bytes.
e Sendsit to the port.

* Waitsfor areply.

e Decodesthereply.

* Sendsit back to the caler:

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port)
end.

Assuming that both the arguments and the results from the C functions are less than 256, a simple encoding/decoding
scheme is employed. In this scheme, f 00 is represented by byte 1, bar is represented by 2, and the argument/result
is represented by a single byte aswell:

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].
decode([Int]) -> Int.

The resulting Erlang program, including functionality for stopping the port and detecting port failures, is as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 269

9.4 Ports

-module(complexl).
-export([start/1l, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->

call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),
Port = open port({spawn, ExtPrg}, [{packet, 2}]),
loop(Port).

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->
exit(port terminated)
end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

9.4.2 C Program

On the C side, it is necessary to write functions for receiving and sending data with 2 byte length indicators from/to
Erlang. By default, the C program is to read from standard input (file descriptor 0) and write to standard output (file
descriptor 1). Examples of such functions, r ead_cnmd/ 1 andwr i t e_cnd/ 2, follows:

270 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.4 Ports

/* erl _comm.c */

#include <stdio.h>
#include <unistd.h>

typedef unsigned char byte;

int read exact(byte *buf, int len)

{
int i, got=0;

do {
if ((1i = read(0, buf+got, len-got)) <= 0){
return(i);
}

got += 1i;
} while (got<len);

return(len);

}

int write exact(byte *buf, int len)

{

int i, wrote = 0;

do {
if ((i = write(l, buf+wrote, len-wrote)) <= 0)
return (i);
wrote += 1i;
} while (wrote<len);

return (len);

}

int read cmd(byte *buf)
{

int len;

if (read exact(buf, 2) != 2)
return(-1);

len = (buf[0] << 8) | buf[1l];

return read exact(buf, len);

}

int write cmd(byte *buf, int len)

{
byte 1i;

1i = (len >> 8) & Oxff;
write exact(&li, 1);

1li = len & Oxff;
write exact(&li, 1);

return write exact(buf, len);

}
Noticethat st di nandst dout arefor buffered input/output and must not be used for the communication with Erlang.

Inthe mai n function, the C program isto listen for a message from Erlang and, according to the selected encoding/
decoding scheme, usethefirst byte to determine which function to call and the second byte as argument to the function.
The result of calling the function is then to be sent back to Erlang:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 271

9.5 Erl_Interface

/* port.c */
typedef unsigned char byte;

int main() {
int fn, arg, res;
byte buf[100];

while (read cmd(buf) > 0) {
fn = buf[0];
arg = buf[1];

if (fn == 1) {
res = foo(arg);

} else if (fn == 2) {
res = bar(arg);

}

buf[0] = res;

write cmd(buf, 1);
}

}
Notice that the C program isin awhi | e-loop, checking for the return value of r ead_cnd/ 1. Thisis because the
C program must detect when the port closes and terminates.
9.4.3 Running the Example
Step 1. Compile the C code:

unix> gcc -o extprg complex.c erl comm.c port.c

Step 2. Start Erlang and compile the Erlang code:

unix> erl
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with "G)
1> c(complexl).
{ok, complex1}

Step 3. Run the example:

2> complexl:start("extprg").
<0.34.0>

3> complexl:foo(3).

4

4> complexl:bar(5).

10

5> complexl:stop().

stop

9.5 Erl_Interface

This section outlines an example of how to solve the example problem in Problem Example by using a port and
Erl_Interface. It is necessary to read the port example in Ports before reading this section.

272 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Erl_Interface

9.5.1 Erlang Program

Thefollowing exampl e shows an Erlang program communicating with a C program over aplain port with home made
encoding:

-module(complexl).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->

call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),
Port = open port({spawn, ExtPrg}, [{packet, 2}1]),
loop(Port).

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->
exit(port terminated)
end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

There are two differences when using Erl_Interface on the C side compared to the example in Ports, using only the
plain port:
e AsErl_Interface operates on the Erlang external term format, the port must be set to use binaries.

* Instead of inventing an encoding/decoding scheme, thet erm t o_binary/ 1 andbinary_to_term 1
BIFs areto be used.

That is:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 273

9.5 Erl_Interface

open_port({spawn, ExtPrg}, [{packet, 2}])

is replaced with:

open port({spawn, ExtPrg}, [{packet, 2}, binary])
And:

Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end

is replaced with:
Port ! {self(), {command, term to binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, binary to term(Data)}
end

The resulting Erlang program is as follows:

274 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Erl_Interface

-module(complex2).
-export([start/1l, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->

call port({foo, X}).
bar(y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),
Port = open_port({spawn, ExtPrg}, [{packet, 2}, binary]),
loop(Port).

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, term to binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, binary to term(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->